

SERANGOON JUNIOR COLLEGE General Certificate of Education Advanced Level Higher 1

CANDIDATE NAME

CLASS

CHEMISTRY JC 2 Preliminary examination Paper 2

8872/02 20 August 2015 2 hours

Additional Materials: Data Booklet

READ THESE INSTRUCTIONS FIRST

Candidates answer on the question paper.

Write your name and class on all the work you hand in.

Write in dark or blue pen.

Do not use paper clips, glue or correction fluid.

The number of marks is given in bracket [] at the end of each question or part question.

At the end of the examination, fasten all your work securely together.

FOR EXAMINER'S USE					
P1 (M0	CQ)	30			
	A1	30			
	A2	9			
	A3	16			
P2	A4	7			
	B5	20			
	B 6	20			
	B7	20			
Tota	110				

This document consists of <u>13</u> printed pages and <u>3</u> blank page.

Section A

Answer all t	the questions i	n the spaces	provided.

Elements A , B , C , D and E are five consecutive elements from Period 3 and 4 of the Periodic Table. The following shows the successive ionisation energies of element C .					I 4 of the ent C .					
No	o. of ele	ectrons	1	2	3	4	5	6	7	8
lonisation energy / kJ mol ⁻¹			1260	2300	3850	5150	6542	9362	11018	33604
(a) (i) Deduce			and expl	ain whic	h group	element	C belong	s to.		[2]
		Group Largest there ar principa electros remove.	<u>VII</u> . e 7 valen <u>al quantu</u> tatic forc	n ionisa ice elect um shell ices of a	tion en rons. Th <u>I</u> nearer attractio	ergy from the <u>8th elec</u> the nucle n, requir	m 7 th to ctron is eus, thus ing muc	8 th elec located experie ch more	ctron. Th in an in nce stron e energy	nus, ner iger to
	(ii)	Hence, configur	state the ation.	e identity	of eler	ment C a	ind write	down i	ts electro	onic [2]
		<u>Chlorin</u>	<u>e</u> . Electr	onic con	figuratio	n: <u>1s²2s²</u>	2p ⁶ 3s ² 3j	<u>)</u> .		
(b)	Expla	in the fol	lowing ob	servatio	ns, givin	g equatio	ons where	e approp	oriate.	
	(1)	The firs energy	of eleme	on energ nt A .	y of eler	nent B is	lower th	an the fi	rst ionisa	tion [2]
		B is sulf In B, 1 electron required betwee compare	ur: [Ne]3 there is ns in th to overc n the nu ed to the	<u>interela</u> <u>interela</u> <u>e doub</u> come the ucleus a <u>unpaire</u>	is phos ectronic ly-filled <u>weake</u> and the d valence	ohorus: [[repuls 3p orb r electro paired ce 3p ele	Ne]3s ² 3g ion bet ital of ostatic f valence ctron in	ween t B. Less orces o 3p ele A.	<u>he pair</u> s energy of attract ectron ir	<u>of</u> (is ion 1 B
	(ii)	A strong water.	gly acidic	solution	is forme	d when t	he chlori	de of A r	eacts wit	h [2]
		Chloride PCI₃(I) Or PCI₅(I) pH of se	e of A unc + 3 H₂O (+ 4 H₂O (olution ≈	lergoes_ /) → H₃P /) → H₃P ≠ <u>2</u>	hydroly 'O₃ (aq) 'O₄ (aq)	<u>sis</u> to giv + 3 HC <i>I</i> (+ 5 HC <i>I</i> (e <u>white (</u> aq) aq)	f <mark>umes</mark> o	f HC <i>l</i> gas	
	Eler Peri (a) (a)	Elements A Periodic Ta No. of ele remo lonisa ener / kJ n (a) (i) (a) (i) (b) Expla (i) (b) Expla (i) (i) (i)	Elements A, B, C, Periodic Table. The No. of electrons removed lonisation energy / kJ mol ⁻¹ (a) (i) Deduce (i) Deduce Group M Largest there ar principa electros remove. (ii) Hence, configur (ii) Hence, configur (ii) The firs energy (i) Explain the foll (i) The firs energy B is sulf In B, f electrod required betwee compare compare betwee compare	Elements A, B, C, D and E Periodic Table. The followingNo. of electrons removed1 removedIonisation energy / kJ mol ⁻¹ 1260 energy / kJ mol ⁻¹ (a) (i)Deduce and expl(a) (i)Deduce and explGroup VII.Largest jump in there are 7 valem principal quantu electrostatic ford remove.(ii)Hence, state the configuration.(iii)Hence, state the configuration.(b)Explain the following ob The first ionisatio energy of eleme(i)B is sulfur: [Ne]3 In B, there is electrons in th required to over between the mic compared to the(ii)A strongly acidic water.(iii)A strongly acidic mode(iii)A strongly acidic mode	Elements A, B, C, D and E are five Periodic Table. The following shows a No. of electrons 1 2 Ionisation 1260 2300 energy / kJ mol ⁻¹ (a) (i) Deduce and explain whice Group VII. Largest jump in ionisa there are 7 valence elect principal quantum shell electrostatic forces of remove. (ii) Hence, state the identity configuration. (b) Explain the following observatio (i) The first ionisation energy energy of element A. (i) B is sulfur: [Ne]3s ² 3p ⁴ , A In B, there is interelate electrons in the doub required to overcome the between the nucleus a compared to the unpaire (ii) A strongly acidic solution water. (ii) A strongly acidic solution water. PC/ ₃ (l) + 3 H ₂ O(l) \rightarrow H ₃ P pH of solution ≈ 2	Elements A, B, C, D and E are five consect Periodic Table. The following shows the succe No. of electrons 1 2 3 removed 1 20 33850 energy / kJ mol ⁻¹ (a) (i) Deduce and explain which group Group VII. Largest jump in ionisation energy electrostatic forces of attraction remove. (ii) Hence, state the identity of eler configuration. (b) Explain the following observations, givin (i) The first ionisation energy of elerent A. B is sulfur: [Ne]3s ² 3p ⁴ , A is phose In B, there is interelectronic electrons in the doubly-filled required to overcome the weaked between the nucleus and the compared to the unpaired valence (ii) A strongly acidic solution is formed water. (ii) A strongly acidic solution is formed water. Chloride of A undergoes hydroly PC/ ₅ (l) + 4 H ₂ O(l) \rightarrow H ₃ PO ₄ (aq) pH of solution ≈ 2	Elements A, B, C, D and E are five consecutive ele Periodic Table. The following shows the successive io No. of electrons 1 2 3 4 Ionisation 1260 2300 3850 5150 energy / kJ mol ⁻¹ (a) (i) Deduce and explain which group element of Group VII. Largest jump in ionisation energy from there are 7 valence electrons. The 3^{th} electrostatic forces of attraction, require remove. (ii) Hence, state the identity of element C at configuration. (ii) Hence, state the identity of element C at configuration. (i) The first ionisation energy of element B is energy of element A. B is sulfur: [Ne]3s ² 3p ⁴ , A is phosphorus: [I In B, there is interelectronic repulsis electrons in the doubly-filled 3p orbited by required to overcome the weaker electron between the nucleus and the paired compared to the unpaired valence 3p electron (ii) A strongly acidic solution is formed when the water. Chloride of A undergoes hydrolysis to give PCl ₃ (l) + 3 H ₂ O(l) \rightarrow H ₃ PO ₃ (aq) + 3 HCl (Or PCl ₅ (l) + 4 H ₂ O(l) \rightarrow H ₃ PO ₄ (aq) + 5 HCl (pH of solution ≈ 2	Elements A, B, C, D and E are five consecutive elements for Periodic Table. The following shows the successive ionisation of No. of electrons 1 2 3 4 5 removed 1 2 3 4 5 lonisation 1260 2300 3850 5150 6542 energy / kJ mol ⁻¹ (a) (i) Deduce and explain which group element C belong Group VII. Largest jump in ionisation energy from 7 th to there are 7 valence electrons. The 8 th electron is principal quantum shell nearer the nucleus, thus electrostatic forces of attraction, requiring muc- remove. (ii) Hence, state the identity of element C and write configuration. Chlorine. Electronic configuration: $1s^22s^22p^63s^23t$ (b) Explain the following observations, giving equations where (i) The first ionisation energy of element B is lower the energy of element A. B is sulfur: [Ne]3s ² 3p ⁴ , A is phosphorus: [Ne]3s ² 3r In B, there is interelectronic repulsion betr electrons in the doubly-filled 3p orbital of required to overcome the weaker electrostic for between the nucleus and the paired valence compared to the <u>unpaired valence 3p electron</u> in (ii) A strongly acidic solution is formed when the chlorid water. (ii) A strongly acidic solution is formed when the chlorid water. (iii) A strongly acidic solution is formed when the chlorid water. (iv) PCI ₃ (<i>i</i>) + 3 H ₂ O(<i>i</i>) \rightarrow H ₃ PO ₄ (aq) + 5 HC <i>i</i> (aq) pH of solution ≈ 2	Elements A, B, C, D and E are five consecutive elements from Peri Periodic Table. The following shows the successive ionisation energies No. of electrons 1 2 3 4 5 6 lonisation 1260 2300 3850 5150 6542 9362 energy / kJ mol ⁻¹ (a) (i) Deduce and explain which group element C belongs to. Group VII. Largest jump in ionisation energy from 7 th to 8 th electron there are 7 valence electrons. The 8 th electron is located principal quantum shell nearer the nucleus, thus experie electrostatic forces of attraction, requiring much more remove. (ii) Hence, state the identity of element C and write down i configuration. Chlorine. Electronic configuration: 1s ² 2s ² 2p ⁶ 3s ² 3p ⁵ . (b) Explain the following observations, giving equations where approp (i) The first ionisation energy of element B is lower than the fi energy of element A. B is sulfur: [Ne]3s ² 3p ⁴ , A is phosphorus: [Ne]3s ² 3p ³ In B, there is interelectronic repulsion between t electrons in the doubly-filled 3p orbital of B. Less required to overcome the weaker electrostatic forces of between the nucleus and the paired valence 3p electron in A. (ii) A strongly acidic solution is formed when the chloride of A n water. Chloride of A undergoes hydrolysis to give white fumes of PC/ ₃ (l) + 3 H ₂ O (l) \rightarrow H ₃ PO ₄ (aq) + 3 HCl (aq) Or PC/ ₅ (l) + 4 H ₂ O (l) \rightarrow H ₃ PO ₄ (aq) + 5 HCl (aq) pH of solution ≈ 2	Elements A, B, C, D and E are five consecutive elements from Period 3 and Periodic Table. The following shows the successive ionisation energies of element No. of electrons 1 2 3 4 5 6 7 Ionisation 1260 2300 3850 5150 6542 9362 11018 energy / kJ mol ⁻¹ (a) (i) Deduce and explain which group element C belongs to. Group VII. Largest jump in ionisation energy from 7 th to 8 th electron. The there are 7 valence electrons. The 8 th electron is located in an in principal quantum shell nearer the nucleus, thus experience stron electrostatic forces of attraction, requiring much more energy remove. (ii) Hence, state the identity of element C and write down its electron Chlorine. Electronic configuration: $1s^22s^22p^63s^23p^5$. (b) Explain the following observations, giving equations where appropriate. (i) The first ionisation energy of element B is lower than the first ionisat energy of element A. B is sulfur: [Ne]3s ² 3p ⁴ , A is phosphorus: [Ne]3s ² 3p ³ In B, there is interelectronic repulsion between the pair electrons in the doubly-filled 3p orbital of B. Less energy required to overcome the weaker electrostatic forces of attractor between the nucleus and the paired valence 3p electron in formal the paired valence 3p electron in compared to the unpaired valence 3p electron in A. (ii) A strongly acidic solution is formed when the chloride of A reacts with water. Chloride of A undergoes <u>hydrolysis</u> to give white fumes of HC/ gas PC/3 (t) + 3 H ₂ O (t) \rightarrow H ₃ PO ₃ (aq) + 3 HC/ (aq) Or PC/5 (t) + 4 H ₂ O (t) \rightarrow H ₃ PO ₄ (aq) + 5 HC/ (aq) pH of solution \approx 2

(b)	Acety	vlacetaldehyde can undergo oxidation with potassium dichromate(VI) under
	(i)	Write two <u>redox</u> half-equations to represent the reaction between acetylacetaldehyde acetaldehyde and $Cr_2O_7^{2-}$ ions and prove that the overall equation is as follows: $3CH_3COCH_2CHO + Cr_2O_7^{2-} + 8H^+ \rightarrow 3CH_3COCH_2COOH + 4H_2O + 2Cr^{3+}$
		$Cr_{r}O_{-}^{2-} + 14H^{+} + 6e \rightarrow 2Cr^{3+} + 7H_{-}O_{-}$ (1)
		$CH_2CO_7 + H_4H + 0e^{-1/2}CO_1 + H_2O^{-1} = (1)$ $CH_3COCH_2CHO + H_2O \rightarrow CH_3COCH_2COOH + 2H^+ + 2e^{-1} = (2)$
		To balance the no of e, 3 x (2) 3 CH ₃ COCH ₂ CHO + 3H ₂ O \rightarrow 3 CH ₃ COCH ₂ COOH + 6H ⁺ + 6e
		Overall equation: $3CH_3COCH_2CHO + Cr_2O_7^{2-} + 8H^+ \rightarrow 3CH_3COCH_2COOH + 4H_2O + 2Cr^{3+}$ (shown)
	(ii)	8 cm ³ of liquid acetylacetaldehyde was dissolved in water and made up to 250 cm ³ . 25.0 cm ³ of this solution was titrated with 0.10 mol dm ⁻³ acidified potassium dichromate(VI). Given that the density of acetylacetaldehyde is 0.956 g cm ⁻³ , calculate the volume of potassium dichromate(VI) required to complete the titration.
		$n_{acetylcetaldyhyde}$ in 250 cm ³ = $\frac{8 \times 0.956}{86.0}$ = 8.893 x 10 ⁻² mol
		$n_{acetylacetaldyhyde}$ in 25 cm ³ = 8.893 x 10 ⁻³ mol
		$n_{Cr_2O_7^{2-}} = \frac{8.898 \times 10^{-3}}{3} = = 2.964 \times 10^{-3} \text{ mol}$
		$n_{Cr_2O_7^{2-}} = \frac{2.964 \times 10^{-3}}{0.1} = 2.96 \text{ x } 10^{-2} \text{ dm}^{-3} = 29.6 \text{ cm}^{-3}$
	(iii)	Propose a simple chemical test that allows you to confirm the presence of acetylacetaldehyde and state any observations clearly.
		Test: Add a few drops of Tollen's reagent/Fehling's reagent and warm.
		Observations: A silver mirror/reddish-brown ppt will be observed.
(c)	(i)	Deduce which of the two acids, CH_3COCH_2COOH or $CH_3COCHClCOOH$, has a higher pK_a value.
		The <u>electron-donating R group</u> (-CH ₃) <u>intensifies the negative charge</u>
		relative to the acid, hence, CH ₃ COCH ₂ COOH is the weaker acid and has
		<u>a higher pKa</u> .
		The electron-withdrawing chloro group disperses the negative charge
		on the carboxylate anion hence stabilising the carboxylate anion
		relative to the acid.

	(ii)	Propose a simple test-tube test which can be achieved in the school laboratory to differentiate CH ₃ COCH ₂ COOH from CH ₃ COCHC <i>l</i> COOH.
		[4]
		Test: Add NaOH (aq), heat, followed by aqueous HNO ₃ then aqueous AgNO ₃
		Observation: White ppt of AgCI will be observed for CH ₂ C <i>I</i> COOH but not for CH ₃ COOH
		[Total: 16]

4	Alun	ninium reacts with fluorine, chlorine and oxygen to form aluminium fluoride,						
	(a)	Using chemical equations only, explain the action of water on aluminium chloride						
	(/	and suggest a pH value of the solution.						
		$AICI_3 + 6H_2O \rightarrow [AI(H_2O)_6]^{3+} + 3CI$						
		[Al(H ₂ O) ₆] ^{•+} ≑ [Al(H ₂ O)₅OH] ²⁺ + H ⁺						
		pH = 3.0						
	(b)	The melting point of aluminium fluoride, aluminium chloride and aluminium oxide is						
		1291°C, 192°C and 2072°C respectively. Using bonding and structure, explain the						
		differences in their melting points.						
		Al ₂ O ₃ and AlF ₃ have giant ionic structure with strong ionic bonds.						
		AlCl ₃ has simple molecular structure with weak intermolecular van der waal's						
		torces of attraction.						
		Hence AICla requires the least energy to overcome the weakest intermolecular						
		van der Waal's forces of attraction.						
		For Al ₂ O ₃ and AlF ₃ , $\Delta H_{\text{latt}} \propto \left \frac{q^+ q^-}{r^+ + r^-} \right $						
	• q ⁺ , r ⁺ are the same							
	• Anionic charge: $O^{2^-} > F^-$							
	• Anionic size: $O^{2^-} > F^-$							
		• Magnitude of lattice energy: $Al_2O_3 > AlF_3$						
	(c)	Write chemical equations to show how aluminium oxide reacts separately with						
		hydrochloric acid and sodium hydroxide.						
		Alumium oxide is <u>amphoteric.</u>						
		A/ ₂ O ₃ (s) +6 HC/(aq) → 2 A/C/ ₃ (aq) +3 H ₂ O (/)						
		$A_2O_3(s) + 2 \operatorname{NaOH}(aq) + 3 H_2O(l) \rightarrow 2 \operatorname{Na}[A/(OH)_4] (aq)$						
		(no need state symbols)						
		[lotal: /]						

7

Section B

Answer **two** questions from this section on separate answer paper.

5	2-br	omob	utane is an isomer of 1-bromobutane. It is an irritant and harmful when				
	inge	sted.					
	(a)	(i)	2-bromobutane reacts with aqueous sodium hydroxide. The product \mathbf{M} ,				
			Write a balanced chemical equation showing the production of \mathbf{M} and state				
			the type of reaction that has taken place.				
			$CH_3CH(Br)CH_2CH_3 + NaOH \rightarrow CH_3CH(OH)CH_2CH_3 + NaBr$				
		(::)	Nucleophilic substitution				
		(11)	according to the following equation.				
			$C_4H_{10}O(g)$ + $6O_2(g)$ → $4CO_2(g)$ + $5H_2O(l)$				
			Using bond energy from the <i>Data Booklet</i> , calculate the enthalpy change of combustion, in kJ mol ⁻¹ . Leave your answer to four significant figures.				
		H					
		Н—(Ċ-Ċ-Ċ-H _Н Н				
		ŀ					
			+60=0-740=0=0+5				
		ΔH =	Σ BE (reactants) - Σ BE (products)				
		= [3E	BE(C-C) + 9BE (C-H) + BE(C-O) + BE(O-H) + 6BE(O=O)]				
		To (– [8BE(C=O) + 10BE(O-H)]				
		= [3(350) + 9(410) + 360 + 460 + 6(496)] - [8(740) + 10(460)] 250 + 3600 + 360 + 460 + 2976) - (5920 + 4600)				
		= (10)	= (1050 + 3690 + 360 + 460 + 2976) - (5920 + 4600) $= 8536 - 10520$				
		= - 1	984 kJ mol ⁻¹				
		(iii)	Hence, using relevant data from the Data Booklet, determine the mass of the				
			product M required to boil 100 cm ³ of water from 25°C given that the process				
			Step (1) Using Q' = $mc\Delta T$				
			Q' = 100(4.18)(100-25) = 31350 J				
			$Star(0) \sqcup sing(0) = (affining(0)) O$				
			31350 = (80/100)Q				
			Q = 39187.5 J				
			Step (3) Using $\Delta H_c = -(Q/n)$				
			$-1964 \times 10^{-1} = -(39167.3/11)$ n = 0.01975 mol				
			mass = $0.01975 \times 74 = 1.46 \text{ g}$				
			[]				
			[0]				

		<u>dm⁻³</u>) while keeping [RBr] constant, the <u>rate is increased</u> $\frac{8.00 \times 10^{-5}}{5.25 \times 10^{-5}} = 1.5$ <u>times [1]</u>
		Hence, order of reaction with respect to $OH^{T} = 1$
	(ii)	Determine the rate constant for this reaction and state its units.
		Rate = k [RBr] [OH]
		$525 \times 10^{-5} = k \times 0.010 \times 0.10$
		$k = 0.0525 \text{ mol}^{-1} \text{ dm}^3 \text{ min}^{-1}$
		[6]
		[Total: 20]

		first synthetic pathway used for the preparation of styrene involves cinnamic acid as its main reagent. This method was eventually ceased due to its high production cost and low solubility of cinnamic acid in organic solvent.					
			ОН				
			Cinnamic acid				
Cu be	urrer enzei	ntly, ne c	more than 99% of styrene is produced from ethylbenzene. In Stage 1 , ombines with ethene in an acid-catalysed chemical reaction as shown below.				
Sta	tage	1:	$ + = \rightarrow \qquad \qquad$				
Ne iro	lext, g on (II	gase II) ox	eous ethylene is mixed in high-temperature steam and passed over a solid kide catalyst bed to produce styrene:				
St	tage	2:					
			steam at 600 °C, Fe_2O_3 (s) catalyst \rightarrow + H ₂				
			Styrene				
(a)	a) ((i)	State the types of reaction undergone in Stage 1 and Stage 2.				
			Stage 1: electrophilic substitution Stage 2: elimination				
	((ii)	Using the concept of hybridisation, suggest if styrene is a planar molecule.				

	(iv)	With the aid of chemical equations, show how a solution containing equal concentration of lactic acid and sodium lactate moderates the pH when small amounts of acid or base is added.
		Component of buffer solution: CH ₃ CH(OH)CO ₂ H and CH ₃ CH(OH)COO ⁻ Na ⁺
		When small amount of H^+ is added: CH ₃ CH(OH)COO ⁻ + H ⁺ \rightarrow CH ₃ CH(OH)CO ₂ H
		When small amount of OH ⁻ is added CH ₃ CH(OH)CO ₂ H + OH ⁻ \rightarrow CH ₃ CH(OH)COO ⁻ + H ₂ O
		Thus pH of the solution remains fairly constant.
	(v)	Calculate the pH of the solution when an additional 30 cm ³ of sodium hydroxide was added to the sample of the yogurt mentioned in (a)(i) .
		30 cm° of additional sodium hydroxide will be in excess.
		Total volume now = $30 \text{ cm}^3 + 25 \text{ cm}^3 + 20 \text{ cm}^3 = 75 \text{ cm}^3$
		Amount of excess NaOH = (30/1000) x 0.500 = 0.0150 mol
		[NaOH] = [OH ⁻] = (0.015)/(75/1000) = 0.200 mol dm⁻³
		pOH = -lg 0.2 = 0.699
		pH = 14 – 0.699 = 13.3 [A1]
	(vi)	With an aid of a diagram, explain why lactic acid has an apparent relative molecular mass of 180.0 in an organic solvent.
		Each acid molecule pairs up to form a cyclic (closed ring) dimer via
		$\frac{1 - \frac{1}{2} + \frac{1}{2} $
		$CH_{S}CH(OH) - C$ $C - CH(OH)CH_{S}$
		δ+ γ ⁸⁻
		intermolecular H-bonds
		[11]
(b)	State acid equat	the type of reaction that has occurred and predict the product(s) when lactic undergoes the following reaction. You are to include balanced chemical ion in your answer.
	(i)	Lactic acid reacts with ethanol in the presence of hot concentrated sulfuric
		acid to form two organic products.
		Esteritication

		$CH_3CH(OH)COOH + CH_3CH_2OH \rightleftharpoons CH_3CH(OH)COOCH_2CH_3 + H_2O$
		Elimination
	<i>(</i> ii)	Lactic acid reacts with lithium aluminium bydride in dry other to form
	(11)	compound Z.
		Reduction
		$CH_{C}CH(OH)COOH + 2[H] \rightarrow CH_{C}CH(OH)CH_{C}(OH)$
		[6]
(c)	(i)	Compound Z from (b)(ii) can be formed from an alkene. Name the alkene
(-)	(-)	and suggest the reagent and conditions required for the reaction.
		Propene
		Cold alkalina KMnO
	(***)	
	(11)	Suggest reagent and conditions on how the alkene mentioned in (C)(I) can
		be converted into a saturated hydrocarbon.
		H ₂ (g), Nickel Catalyst, heat
		or
		H ₂ (g), Platinum Catalyst, r.t.p.
		[3]

END OF PAPER