Cells

- To view organelles, electron microscope (x200000) is used, as compared to light microscope (x1000)
- Longitudinal section: cutting across the length of the cell, vice versa for transverse section
- The protoplasm consists of the cytoplasm and the nucleus

Part	Function & Structure			
	Made of lipids and proteins			
Plasma	Partially perme	able membrane		
Membran e	Controls substances entering and leaving the cell by allowing only substances smaller than its pores to pass through			
	Site of most ce	Il activities		
	Contains organ	elles:		
		Site of protein synthesis		
	Rough Endoplasmic Reticulum (R.E.R.)	Network of flattened spaces lined with a membrane		
		Appears rough because small ribosomes are attached to its outer surface		
Cytoplasm		Outer surface is continuous with the nuclear envelope		
Cyropidsin		Tubular and do not have ribosomes		
	Smooth Endoplasmic	Synthesises fats and steroids		
	Reticulum	Converts harmful substances into harmless materials via detoxification		
	Ribosomes	Attached ribosomes (R.E.R.) synthesise proteins that are transported out of cells		
		Free ribosomes (cytoplasm) synthesise proteins that are used within the cell		

	Golgi Apparatus	Stack of flattened spaces surrounded by a membrane
		Chemically modifies substances made by the endoplasmic reticulum
		Stores and packages them in vesicles for secretion out of the cell
		Tiny spherical spaces enclosed by a membrane
		Transport substances within the cell:
	Vesicles	 Small vesicles containing substances made by the endoplasmic reticulum are pinched off from the endoplasmic reticulum
		2. The small vesicles fuse with the Golgi apparatus and release their contents into the Golgi apparatus
		 The Golgi apparatus chemically modifies the substances made by the endoplasmic reticulum
		 Secretory vesicles containing the chemically-modified substances are pinched off from the Golgi apparatus
		5. The secretory vesicles move to the plasma membrane
		6. The secretory vesicles fuse with the plasma membrane and their contents are released out of the cell
	Mitochondrio n	Sausage-shaped
		Performs aerobic respiration in which

		glucose is oxidised in the presence of oxygen to release energy		
	Chloroplasts	Contains chlorophyll which absorbs and converts light energy to chemical energy during photosynthesis		
	Consists of nu which is surrou	ucleolus and chromatin in nucleoplasm, nded by a nuclear envelope		
	Controls cell ac worn-out parts	ctivities such as cell growth and repair of		
	Essential for ce	ll division		
Nucleus	Nuclear Envelope	Separates the contents of the nucleus from the cytoplasm		
	Nucleoplasm	Dense material within the nucleus		
	Nucleolus	Make proteins in the cell		
	Chromatin	Made up of deoxyribonucleic acid that stores hereditary information		
		Chromatin threads condense into chromosomes during cell division		
	Made of cellulo	se		
	Fully permeable	e membrane and inelastic		
	Protects the cells from injuries			
	Give plant cells a fixed shape			
Vacuole	(Animal cells) Numerous small vacuoles containing water and food substances, which exists temporarily			
	(Plant cells) One large, central vacuole containing cell sap (sugars, mineral salts and amino acids), that is surrounded by the partially permeable tonoplast			

- Only plant cells have a cell wall, chloroplasts and a large, central vacuole
- Only animal cells have centrioles and numerous small vacuoles

- Differentiation is the process by which a cell becomes specialised for a specific functions (e.g. red blood cells, xylem vessel and root hair cells)
- Different ____ forming ____ work together to perform a specific function (except in the case of cells of the same type forming simple tissues)

0 "		Simple Tissue		0.000	•	Organ		Organ
Cells	7	Comple x Tissue	-	Organs	1	System	7	-ism

Movement of Substances

	Diffusion	Osmosis	Active Transport
Direction of net movement	From a region of higher concentration to a region of lower concentration	From a solution of higher water potential to a solution of lower water potential	From a region of lower concentration to a region of higher concentration
	Down the concentration gradient	Down the water potential gradient	Against the concentration gradient
Particles involved	Any	Water molecules	Any
Energy?	Not re	quired	Required
Partially permeable membrane?	Not required	Requ	uired

- At equilibrium, there is no net movement of substances across the partially permeable membrane, but there is still movement of substances across the partially permeable membrane due to Brownian motion
- Only soluble substances can affect the water potential of a solution

Solution	Dilute	Same Concentration	Concentrated	
Water potential	Higher than cell	Same as cell	Lower than cell	
Type of solution	Hypotonic	Isotonic	Hypertonic	
Direction of movement of	From surrounding solution into the cell via osmosis water		From the cell into the surrounding solution via osmosis	
water molecule	Down the water potential gradient	molecules	Down the water potential gradient	
	Animal Cells			
	Cell expands and bursts Cell remains the same as the original state		Cell shrink in size and becomes crenated	
	Plant Cells			
Final appearance of cell	Vacuole increases in size and pushes against the cell wall, exerting turgor pressure on the inelastic cell wall	Cell remains the same as the original state	Vacuole decreases in size and shrinks away from the cell wall and the cell is plasmolysed	
	Cell expands and becomes turgid		Cell shrink in size and becomes flaccid	

- When a cell bursts, it is irreversible because the cytoplasmic contents are released into the solution
- Importance of turgidity:
 - 1. Plants remain upright due to turgor pressure within their cells

- 2. Loss of turgidity causes plants to wilt
- To reverse plasmolysis, water is added to dilute a hypertonic soil solution
- Factors affecting rate of diffusion and osmosis:
 - 1. The steeper the concentration / water potential gradient, the faster the rate of diffusion / osmosis
 - 2. The higher the surface area to volume ratio, the higher the rate of diffusion / osmosis
- As active transport requires energy, it only occurs in respiring living cells

Importanc e of	Humans	Plants	
Nutrionto	Provide energy for metabolic activities		
Nutrients	Supply raw materials for	repair of worn-out tissues	
	Solvent in which chemical reaction takes place	Photosynthesis	
Water	Control body temperature through the removal of latent heat when sweat evaporates	Keeping plant cells turgid, and hence plants upright	
	Transport dissolved food substances		

Nutrients

Organic Compoun d	Carbohydrates	Fats	Proteins
Elements	Carbon, hydrogen (H) and oxygen (O)		Carbon, hydrogen, oxygen and nitrogen
Ratio of H: O	2:1	Ν	lil
General	$C_nH_{2n}O_n$		

formula				
	Formed via hydrolysis in chemical digestion: a water molecules is needed to break up a complex molecule into smaller molecules			
	Monosaccharides	Fatty Acids	Amino group (-NH₂)	
Simple molecule	A. Glucose B. Fructose		Acidic group (-COOH)	
S	C. Guiderose	Glycerol	Side chain (R)	
	Cannot be further a	digested into smaller	molecules	
	Small enough to membrane	pores of plasma		
	Formed via condensation reaction: two simple molecules are joined together to form a larger molecule with the removal of one water molecule			
Complex molecule s	Disaccharides: • Maltose (A + A) • Lactose (A + C) • Sucrose (A + B)	Nil	Amino acids link up by peptide bonds to form polypeptides	
	Polysaccharides: • Starch (A) • Cellulose (A) • Glycogen (A)		Polypeptides coil to form a 3D-molecule	
Tests	Cut food into smaller pieces, add 1 cm ³ of water, mix well and decant to prepare a food sample			
	Reducing sugar:	Ethanol emulsion	Biuret Test	

	Benedict's test	test	
	Starch: Iodine test		
	Provide energy	for cell activities	Synthesis of new protoplasm for growth and repair
Uses	Synthesise lubricants	Insulating material to prevent excessive heat loss	Synthesis of enzymes and hormones
	Form nucleic acids in DNA	Reduce water loss from skin surface	Synthesis of antibodies to combat diseases

- Benedict's test:
 - 1. Add 2 cm³ of Benedict's solution to 2 cm³ of food sample
 - 2. Shake the mixture and boil it for 2 mins
 - 3. Observations:

Colour Change	Amount of Reducing Sugar
Blue solution remains blue	No reducing sugar
Blue to green precipitate	Traces of reducing sugar
Blue to yellow precipitate	Moderate amount
Blue to brick-red precipitate	Large amount

- Iodine test:
 - 1. Add a few drops of iodine solution
 - 2. Positive test: blue-black Negative test: no change in colour
- Ethanol emulsion test:
 - 1. Add 2 cm³ of ethanol to 2 cm³ of food sample and shake the mixture
 - 2. Positive test: cloudy white emulsion Negative test: solution remains clear
- Biuret test:

- 1. Add 2 cm³ of sodium hydroxide solution to 2 cm³ of food sample and shake the mixture
- 2. Positive test: violet colouration Negative test: no change in colour
- Glucose and fructose can be found in both plants and animals, while galactose is only found in milk sugar in mammals
- Disaccharides consists of two monosaccharide molecules, while polysaccharides consists of many monosaccharides joined together
- Complex carbohydrates (polysaccharides):
 Structure Function Occurrence
 Storage form of

Starch	Made up of	Storage form of carbohydrates in plants	Storage organs	
		Digested to glucose to provide energy for cell activities	of plants (e.g. tapioca)	
		Forms the cell wall		
Cellulose	thousand glucose molecules joined together	Cannot be digested in our intestines as it does not have cellulase	Cell wall of plants	
Glycogen		Storage form of carbohydrates in mammals	Liver and	
		Digested to glucose to provide energy for cell activities	muscle of mammals	

- Adaptations of glycogen and starch as storage materials in cells:
 - 1. Insoluble in water, thus unable to change the water potential in cells

- 2. Large molecules which cannot diffuse through plasma membrane and be lost
- 3. Easily hydrolysed to glucose when needed during tissue respiration
- 4. Compact shape, thus occupying less space than all the individual glucose molecules that makes up a glycogen or starch molecule

Enzymes

- Properties:
 - 1. Is a protein, thus it is affected by temperature and pH
 - 2. Functions as a biological catalyst which speed up chemical reactions by providing an alternative pathway with lower activation energy
 - 3. Specific in action
 - 4. Remains chemically unchanged at the end of the reaction
- Characteristics:
 - 1. Speed up chemical reactions
 - 2. Required in minute amounts as they are chemically unchanged at the end of the reaction
 - 3. Specific in action due to the 'Lock-and-Key' hypothesis
- 'Lock-and-Key' hypothesis:
 - 1. The enzyme is the 'lock' while the substrate is the 'key'
 - 2. An enzyme has a specific 3D shape, which contains an active site
 - 3. Only substrates with a 3D shape complementary to that of the active site can fit into the enzyme to form an enzyme-substrate complex
 - 4. Chemical reactions occur and the substrate is converted into products
 - 5. At the end of the reaction, the products detach from the active sites and the enzyme remains chemically unchanged
- How temperature affects enzyme-catalysed reactions:
 - 1. At very low temperatures, the enzyme is inactive as the kinetic energy is low, thus chances of substrate molecules colliding with the enzyme is very low

- 2. As temperature rises, the kinetic energy of molecules increases, increasing the chances of collision between substrate and enzyme molecules, increasing the rate of formation of enzyme-substrate complex, thus enzyme activity increases
- 3. Beyond the optimum temperature, the high temperature breaks the bond within the enzyme and changes its 3D shape, thus it loses its active site and is denatured
- How pH affects enzyme-catalysed reactions:
 - 1. At the optimum pH of pH _, enzyme activity is the highest
 - 2. As the solution becomes more acidic or alkaline, the enzyme activity decreases
 - 3. Beyond an extremely low pH of _ and an extremely high pH of _, the enzyme's 3D shape is changed, thus it loses its active sites and is denatured
- When enzymes are denatured, it loses its active site, thus substrate molecules no longer fit into its active site and no enzyme-substrate complex can be formed, hence no chemical reaction occurs

Nutrients in Humans

- Nutrition is the process by which organism obtain food and energy for growth, repair and maintenance of the body
- Organs of the alimentary canal: mouth, pharynx, oesophagus, stomach, small intestine and large intestine

Ingestion					
Mouth	Food enters the body through the mouth, which leads to the buccal cavity				
Digestion					
	Physical Digestion Chemical Digestion				
Process	Mechanical break-up of large pieces of food into smaller pieces of food into be absorbed				

	No new products formed	New products formed	
	No enzymes involved	Involve digestive enzymes	
Importance	Increase surface area to volume ratio for rapid chemical digestion by digestive enzymes	Allow food substances to be small enough to pass through the intestinal wall and enter the bloodstream	
	Physical Digestion	Chemical Digestion	
	Tongue rolls food into boli	Carbohydrate digestion:	
Mouth		Tongue mixes tood with saliva that contains salivary amylase and mucus Starch	
	Chewing action of food + (Process & Importance)	I Salivary amylase ↓ Maltose The mucus softens the food	
	Propulsion		
	Swalle	owing	
Pharynx	 During breathing, the larynx moves downwards while the epiglottis moves upwards and opens the glottis, allowing air to enter the trachea During swallowing, the larynx moves upwards while the epiglottis moves downwards and covers the glottis, preventing food from entering the trachea 		
Oesophagus	 It is a narrow, muscular tube extending to the stomach It is made up of a pair of antagonistic muscles Inner circular muscles Outer longitudinal muscles 		
	Peristalsis		

	 It is the rhythmic, wave-like muscular contractions in the wall of the alimentary canal It pushes food along the gut It enables food to be mixed with digestive juices 			
	At the upper end of bolus At the lower end of bolu			
	 Circular muscles contract Longitudinal muscles relax Gut becomes longer and narrower, thus it constricts This pushes the bolus forward 	 Circular muscles relax Longitudinal muscles contract Gut becomes shorter and wider, thus it dilates This allows the bolus to enter the lumen 		
	Digestion			
Stomach	 The stomach is a distensible, muscular bag that stores food When the stomach is fully distended, stretch receptors in the stomach sends a signal to the hypothalamus in the brain that it is sated The stomach has numerous pits that lead to gastric glands which secrete gastric juice Gastric juice contains hydrochloric acid and the enzyme pepsin Importance of hydrochloric acid: Stops the action of salivary amylase Converts inactive pepsinogen to active pepsin Provides an acidic environment of optimum pH in the stomach so that pepsin activity is at its highest 			
	Physical Digestion	Chemical Digestion		
	Churning action: strong muscular walls and peristalsis + (Process & Importance)	Protein digestion: Proteins I Pepsin		

		↓ Polypeptides The partially digested food is liquefied, forming chyme	
	Propulsion		
Pyloric Sphincter	 It is the ring of muscle located at where the stomach joins the small intestine When it contracts, the entrance to the small intestine closes When it relaxes, the entrance to the small intestine opens, allowing chyme to pass into the duodenum of the small intestine 		
	Digestion		
Small Intestine	 The small intestine corrown 1. U-shaped duod digestion occurs 2. Jejunum and massorption of digestion of digestion When chyme enters the secretion of: Jejunum and massorption of digestion occurs Paper enters the secretion of: Pancreatic juice for any last of the secretion of:	nsists of: enum where most of the much coiled ileum where gested food occurs he duodenum, it stimulates e by the pancreas, which e, trypsin and lipase by the epithelial cells of the containing maltase, sucrase, and lipase ler estinal juice and bile are c chyme alkaline environment of so that pancreatic and e activity is at its highest Chemical Digestion <u>Carbohydrate digestion</u> :	
	molecules into smaller fat globules + (Importance)	Starch	

I Pancreatic amylase ↓ Maltose
Maltose
Maltase (intestinal)
Glucose
Lactose
Lactase (intestinal)
Glucose + Galactose
Sucrose
Sucrase (intestinal)
↓ Glucose + Fructose
Protein digestion:
Proteins I
Trypsin
Polypeptides
Polypeptides
Erepsin (intestinal)
↓ Amino acids
Fat digestion:
Emulsified fats
Lipase (pancreatic & intestinal)

			↓ Fatty acids + glycerol
	Eq	gestion	
	 The large intestine consists of the colon, rectum and anus The appendix joining the colon and small intestine have no specific function, and causes appendicitis when it is infected The intestinal wall secretes mucus to act as a lubricant to move faeces along 		
Large	Colon		Rectum
Intestine	Excess water and mineral salts are absorbed into the bloodstream		It stores undigested and unabsorbed matter
			Anus
			These matter are discharged as faeces through the anus via egestion
Absorptic			
Absorption i absorbed into	s a process whe body cells	ereby dig	ested food materials are
	Adaptation		Function
	Very long at 7m		
	Folded	Increase	the surface area to volume
Small Intestine	Presence of villi and microvilli	ratio for rapid absorption	
	One-cell thick epithelium	Provide a short distance for rapid diffusion of digested food materials into the blood capillaries	
	Villi richly supplied with	Allow rapid transport of glucose and amino acids away from the small	

	blood vessels	intestine, maintaining a steep concentration gradient, thus allowing rapid diffusion of glucose and amino acids			
	Villi contain lacteals	Allow rapid transport of fats away from the small intestine, maintaining a steep concentration gradient, thus allowing rapid diffusion of fats			
	Process	Nutrients Absorbed			
			Diffuse capillarie	into blood es	
	Diffusion Fatty	Diffuse then co minute f enter the	into epithelium, ombine to form fat globules which e lacteal		
		Acids & Glycero I Glucose	Lacteals larger l which c away fro the blood	merge to form ymphatic vessels arry fat droplets om the ileum into dstream	
	Activo transport		Concent intestine in blood	ration in small is lower than that capillaries	
	Active transport Amino acids	Absorbe capillarie transpor	d into blood es by active t		
Assimilation					
Assimilation is the process whereby some of the absorbed food substances are converted into new protoplasm or used to provide energy				ne absorbed food r used to provide	
Nutrient	Transport	Usage Excess			

Glucose	From small - intestine to liver by the hepatic portal vein	Leaves the liver and transported to body cells to be oxidised during aerobic respiration to release energy	Transported back to liver for storage as glycogen	
Amino acids		Converted into new protoplasm used for growth and repair of worn-out cells Form enzymes and hormones	Broken down in the liver via deamination	
		Build protoplasm when glucose is sufficient	Stored in adipose tissue	
Fats	-	Broken down to provide energy when glucose is insufficient		

• Organs associated with the alimentary canal (accessory organs): liver, pancreas and gallbladder

Function	Elaboration		
Regulation of blood glucose concentration	 The islets of Langerhans in the pancrea produces the hormones insulin and glucagon When blood glucose concentration is too high the liver secretes insulin, stimulating the liver to convert excess glucose to glycogen to reduce blood glucose concentration When blood glucose concentration is too low the liver secretes glucagon, stimulating the live to convert glycogen to glucose to raise the blood glucose concentration 		
Production of bile	• Bile is temporarily stored in the gallbladder and released via the bile duct into the small intestine		

	Deamination	Acid group remaining in	
	Amino group (-NH ₂ -) is removed from amino acids	the deaminated amino acid is converted into carbon residue	
Deamination	↓converted to		
acids	Ammonia	Glucose	
	↓ conve	erted to	
	Urea, to be excreted from the body in the urine	Glycogen, for storage in the liver	
Protein synthesis	Synthesises prothrombin and fibrinogen		
	 Process of converting harmful substances into harmless materials 		
	Alcohol		
Detoxification	Alcohol dehydrogenase		
	↓ Acetaldehyde		
	Acetaldehyde is a source of energy in cells		
	Worn-out red blood cells broken down in the spleen		
	\downarrow		
Storage of irons and vitamins	Haemoglobin is released and broken down in the liver		
	Ļ	\downarrow	
	Iron removed and stored in the liver	Bile pigments produced	

Harmful effects of excessive alcohol consumption					
Digestive system Nervous system Social effects					
Cirrhosis, where liver cells are destroyed	Depressant	Violent behaviour			

and replaced with fibrous tissue

Longer reaction time

Committing crimes under the influence of alcohol

Transport in Humans

- In a simple unicellular organism, the movement of materials into and from the cell occurs by diffusion as no part of the cell is far from the external environment
- In a complex multicellular organism, a transport system is needed to carry materials from one part of the body to another as cells are located deep in the body, far from the external environment
- Main functions of blood:
 - 1. Transport of oxygen from the lungs to body cells
 - 2. Protection of body against pathogens
 - 3. Coagulation at wounds to prevent excessive loss of blood and entry of pathogens into the bloodstream

Components of blood				
	Pale yellowish liquid			
	90%	10%		
		Soluble proteins	Pro -thrombin	
			Fibrinogen	
Discourses			Antibodies	
Plasma	Water	Dissolved mineral salts	Calcium phosphate	
		Digested food materials	Glucose	
			Amino acids	

			Excretory products	Urea		
			Hormones	Insulin		
	 Produced by bone marrow When worn-out, it is broken down in the splee Iron in haemoglobin makes it red Lifespan of 3 months 					
	Adaptation		Function	n		
Red blood cells (erythrocytes)	Contains haemoglobin	 Transport of oxygen: As blood passes throug the lungs, oxygen diffuse from the alveoli into the blood Haemoglobin combine reversibly with oxygen form oxyhemoglobin As blood passes throug oxygen-poor tissues, the oxyhaemoglobin release oxygen 				
	Absence of nucleus	More space to carry more haemoglobin to bind to more oxygen, thus allowing rapid transport of oxygen				
	Biconcave, circular shape	Increase surface area volume ratio for ra absorption and release oxygen				
	Elastic	Squeeze through blood capillaries				
Valleita la la al	 Produced in the Lifespan of a	he bone few da	e marrow ys			
cells	Features	Reason				
(leucocytes)	Colourless	Do no	t contain haer	moglobin		

	Mobile	Able t shape of thir	Able to move and change the shape to squeeze through wal of thin blood capillaries	
	Presence of nucleus	Presence of nucleus		
	Lymphocyte	S	Pho	agocytes
	When pathogens the bloodstream stimulate lymphoc produce antibodie	enter , they :ytes to es	Phagocyt process o ingesting particles l	osis is the f engulfing and foreign by phagocytes
	Antibodies prote body from disease • Destroy bac • Clump b together phagocytosi • Neutralise produced bacteria	ct our eria acteria for s toxins by	During some pl killed t bacteria,	phagocytosis, nagocytes are ogether with forming pus
	Immunisatic	n	Tissu	e Rejection
	Exposes a pers weakened forms pathogen to lymphocytes to p antibodies	on to of a induce roduce	Transplan treated bodies, s productio to destroy	ted organs are as foreign stimulating the n of antibodies them
Platelets (thrombocytes)	 Not true fragment o cells Plays a part 	cell; it f cytopl in coag	is a mo lasm from ulation (blo	embrane-bound bone marrow od clotting):
	Damaged tissue and platelets l Produce		hrombin l hrombo inase* & cium ions m calcium	Fibrinogen ∣ Thrombin ↓ Insoluble fibrin threads
	Thrombo	ph	osphate)	which trap

-kinase which neutralises heparin, an anti-clotting substance	↓ Thrombin	blood cells forming a clot
 Haemophilia o mechanism is bleeding may c When blood o without the sol fibrinogen, is le 	ccurs when the greatly impair ause death clots, serum, w luble proteins p ft behind	e blood-clotting ed, thus slight hich is plasma rothrombin and

- Red blood cells have the protein antigen on their surface
- Plasma contains natural antibodies which recognise and bind to specific antigens on the red blood cells of another person, causing agglutination to occur, which block up blood vessels and prevent the flow of blood, leading to death
- Four types of blood groups:

Blood Group	Antigen	Antibody
А	А	b (binds to antigen B)
В	В	a (binds to antigen A)
0	Absent	a & b
AB	A & B	None

Feature	Arteries	Veins	Capillaries
Function	Carry blood away from the heart	Carry blood back to the heart	Link arteries to veins
Wall thickness	Thick to prevent rupture during influx of blood at high pressure	Thin as influx of blood is at low pressure	One-cell thick endothelium to provide a short distance for rapid diffusion of water and dissolved substances

		_						
Lumen	Smal			Large		Large		
Semilunar valves to prevent backflow	Absent Present		Present		А	bsent		
	Elasticity		ty Movement of blood		Exch sub	nange of stances		
			Movement of blood is assisted by the pressure that the skeletal muscles exerts on the vein		Branches repeatedly to increase surface area for the exchange o substances			es edly to e surface for the ge of nces
Others	Walls are so as to rec push the b spurts	elastic oil and lood in			Cross-sectional area is large than that c artery, lowering blood pressur and slowing dow flow of blood t give more tim for the exchang of substances			
Ν	1ain arteries	5			Ma	in veins		
Artery	From	То		Vein		From	То	
Pulmonary artery	Lloart	Lung	IS	Pulmonary vein	l	_ungs	Heart	
Aortic arch	nearr	Dorse aorte	al a			Head		
Dorsal aorta	Aortic arch	Regio below	ns the t	Anterior / superior		Neck	Heart	

Liver

Dorsal aorta Forearms

Hepatic artery

Artery to gut	Stomach	Posterior / inferior vena cava	Regions below the heart		
		Intestine		Stomach	
Renal artery		Kidneys	portal vein	Intestine	Liver
	_		Hepatic vein	Liver	Posterior / inferior
		Renal vein	Kidneys	vena cava	

- Arterioles link the artery to capillaries, which is then linked to the vein by the venule
- Order of pressure in blood vessels: Arteries > arterioles > capillaries > venules > veins
- Tissue fluid carries substances in solution between the tissue cells and the blood capillaries:

When blood flows from the arteriole into the capillaries, the blood pressure remains high

Dissolved food materials & oxygen in blood plasma	-	Excretory waste products			
Blood capillaries					
\downarrow	Diffusion through partially permeable endothelium	Ť			
Tissue fluid					
Ļ	Diffusion through partially permeable plasma membrane	Ť			
Cells					

1. White blood cells can change their shape and squeeze through the tiny pores of the endothelium

2. Larger substances such as red blood cells and proteins cannot pass through the endothelium

		De	ouble circulation	on	
 Blood enters the pulmonary circulation at lower pressure, ensuring sufficient time for oxygen to diffuse into the blood Blood is pumped into the systemic circulation at high pressure, ensuring rapid transport of oxygenated blood to body tissues 					
Circulation		Blood	From	То	Carried by
	Dee	oxygenate d	Heart	Lungs	Pulmonary arteries
Pulmonary	Ox	ygenated	Lungs	Heart	Pulmonary veins
Systemia	Deo	oxygenate d	All parts of body except lungs	Heart	Systemic veins
Systemic	Oxygenated		Heart	All parts of body except lungs	Systemic arteries
		TI	ne cardiac cyc	e	
			E١	vents	
Parts		Left si	de of heart	Right sid	e of heart
		*L	_eft/right of a	person facing	you
			Prerequisite		
Muscular wall separating the left and right side of heart, preventing the mixing of deoxygenated blood in the right side and oxygenated blood in the left side which would reduce the amount of oxygen carried to tissue cells					
Atria have comparatively thin muscular walls as Atrium they only force blood into the ventricles, which does not require high pressure					

	-				
	Ventricles have thicker walls to withstand high pressure than atria as they have to pump blood to other parts of the body, which requires high pressure				
Ventricle	Left ventricle has thicker walls to withstand higher pressure as it pumps blood to body parts that are far away from the heart, which requires more pressure	Right ventricle has thinner walls as it only pumps blood to the lungs, which is close to the heart, which requires less pressure			
	Event 1				
Atrium					
Ventricle	Both atria and ventricles are relaxed				
	Event 2				
	Oxygenated blood from the lungs is brought to	Deoxygenated blood from head, neck and arms is brought to the right atrium by the anterior or superior vena cava			
Atrium the left atrium by the pulmonary veins		Deoxygenated blood from body parts below the neck except the lungs is brought to the right atrium by the posterior or inferior vena cava			
Event 3					
Atrium	Both atria contract, increasing blood pressure in the atria				
	Pressure _{atria} > Pressure _{ventricle}				
Event 4					
Atrioventricula	The two flaps of the	The three flaps of			

r valve	bicuspid or mitral valve open the valve	tricuspid valve open the valve			
		The flaps attached to the walls of the right ventricle by the chordae tendineae			
		The flaps point downwards to allow blood to flow easily			
	Atrioventricular valve ope from the atria to the ventr	ns, allowing blood to flow icles			
	Event 5				
Atrium					
Ventricle	blood flows from the atria into the ventricles				
Event 6A					
Ventricle	Both ventricles contract (ventricular systole), increasing blood pressure in the ventricle				
	Pressure _{ventricles} > Pressure _{atria}				
	Event 7				
	The two flaps of the	The three flaps of the tricuspid valve closes the valve			
Atrioventricula r valve		The chordae tendineae prevent the flaps from being reverted into the right atrium			
	Atrioventricular valves closes and produces a 'lub sound, preventing the backflow of blood into the atria				
Event 8					
Blood pressure in ventricles increases until:					

	Pressure _{aorta} > Pressure _{left} ventricle	Pressure _{pulmonary artery} > Pressure _{right ventricle}			
	Event 9				
Semilunar valve	Aortic valve opens, allowing blood to flow into the aortic arch	Pulmonary valve opens, allowing blood to flow into the pulmonary arch			
	Event 10				
Ventricles	Blood flows from the	Blood flows from the right ventricle into the			
Arteries (Pulmonary or systemic)	aortic arch, entering the systemic circulation	pulmonary arch, entering the pulmonary circulation			
	Event 6B				
	As the ventricles contract, the atria relax				
Atrium	Oxygenated blood from the lungs is brought to	Deoxygenated blood from head, neck and arms is brought to the right atrium by the anterior or superior vena cava			
	the left atrium by the pulmonary veins	Deoxygenated blood from body parts below the neck except the lungs is brought to the right atrium by the posterior or inferior vena cava			
Event 11A					
	Both ventricles relax (ventricular diasto decreasing blood pressure in the ventricle				
Ventricle	Pressure _{aorta} >	Pressure _{ventricle}			
	Pressure _{pulmonary vein} > Pressure _{ventricle}				
Event 12					

Semilunar valve	Aortic valve closes, preventing the backflow of blood into the left ventricle	Pulmonary valve closes, preventing the backflow of blood into the right ventricle		
	The closure of both semilunar valves produces a 'dub' sound			
Event 11B				
Atrium	As the ventricles relax, the atrium contracts			
	Pressure _{atria} > Pressure _{ventricle}			
Event 13				
Atrioventricula r valve	The two flaps of the bicuspid or mitral valve open the valve	The three flaps of the tricuspid valve open the valve		
	Atrioventricular valve opens, allowing blood to flow from the atria to the ventricles			
The whole cycle repeats itself again				

- A ventricular systole and ventricular diastole make up one heartbeat
- The average normal heartbeat is 72 times per minute
- The sphygmomanometer is used to measure blood pressure
- Increase in pressure in the right ventricle is lower than that in the left ventricle
- Coronary heart disease: atherosclerosis → thrombosis
 Coronary artery carry blood to heart muscle

Atherosclerosis: build up of fatty deposits in coronary arteries			
Ļ	Narrows the lumen of coronary arteriesIncreases blood pressure		
↓	 Inner surface of coronary arteries becomes rougher 	↓	
Ļ	 Increases risk of blood clot being trapped in coronary arteries 	↓	

Thrombosis: formation of blood clot in an artery			
\downarrow	 Blood flow to heart is reduced 	↓	
\downarrow	Heart tissues are starved of oxygen	↓	
Heart attack: death of heart tissues			

- Prevention of coronary heart disease:
 - 1. Proper diet by cutting down on animal fats which stick to the inner walls of coronary arteries
 - 2. Not smoking to avoid inhalation of nicotine and carbon dioxide
 - 3. Regular physical exercise to strengthen the heart and maintain elasticity of arterial walls