This document consists of **16** printed pages.

Preliminary Examination 2024

CANDIDATE NAME			
CLASS		INDEX NUMBER	

CHEMISTRY

Secondary 4 Express

Setter: Ms Tiffany Lim Vetter: Mrs Annie Ng

Additional Materials: Multiple Choice Answer Sheet

READ THESE INSTRUCTIONS FIRST

Write in soft pencil.

Do not use staples, paper clips, glue or correction fluid.

Write your name, class and index number on the Question Paper and Answer Sheet in the spaces provided.

There are **forty** questions in this paper. Answer **all** questions. For each question, there are four possible answers, A, B, C, D.

Choose the one you consider correct and record your choice in soft pencil on the separate Answer Sheet.

Read the instructions on the Answer Sheet very carefully.

Each correct answer will score one mark. A mark will not be deducted for a wrong answer. Any rough working should be done in this booklet.

A copy of the Periodic Table is printed on page 2.

The use of an approved scientific calculator is expected, where appropriate.

For Examiner's Use				
Total	40			
Parent's Signature				

28 August 2024

1 hour

XINMIN SECONDARY SCHOOL 日日半

SEKOLAH MENENGAH XINMIN

6092/01

The Periodic Table of Elements

Group																	
1	2											13	14	15	16	17	18
	1 H hydrogen 1					2 He ^{helium} 4											
3	4		proton	i (atomic) n	umber			-				5	6	7	8	9	10
Li	Be		ate	omic symł	loc							В	С	N	0	F	Ne
lithium	beryllium			name								boron	carbon	nitrogen	oxygen	fluorine	neon
7	9		relati	ive atomic i	mass							11	12	14	16	19	20
11	12											13	14	15	16	17	18
Na	Mg											Al	Si	P	S	Cl	Ar
sodium	magnesium	2	1	Б	6	7	o	0	10	11	10	aluminium	silicon	phosphorus	sulfur	chlorine	argon
23	24	01	4	0	0	7	0	9	10	11	12	21	20	31 00	32	35.5	40
19	20	21	22 T:	23	24 Cr	25 Mp	20		28 NI:	29	30 7n		32	33	34 So	30	30
N notopolium	Ca	SC	11 titonium	V	Cr	IVIN	Fe	CO	INI	Cu		Ga	Ge	AS	Se	Bí	N.
39			48 utanium	51	52	55	56	59	59	64	65	70	73	75	79	80	84
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rh	Sr	Y	7r	Nb	Mo	Tc	Ru	Rh	Pd	Αα	Cd	In	Sn	Sh	Te	T	Xe
rubidium	strontium	vttrium	zirconium	niobium	molvbdenum	technetium	ruthenium	rhodium	palladium	silver	cadmium	indium	tin	antimony	tellurium	iodine	xenon
85	88	89	91	93	96	_	101	103	106	108	112	115	119	122	128	127	131
55	56	57–71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ва	lanthanoids	Hf	Та	W	Re	Os	Ir	Pt	Au	Ha	Τl	Pb	Bi	Po	At	Rn
caesium	barium		hafnium	tantalum	tungsten	rhenium	osmium	iridium	platinum	gold	mercury	thallium	lead	bismuth	polonium	astatine	radon
133	137		178	181	184	186	190	192	195	197	201	204	207	209	-	-	-
87	88	89–103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
Fr	Ra	actinoids	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Nh	Fl	Mc	Lv	Ts	Og
francium	radium		rutherfordium	dubnium	seaborgium	bohrium	hassium	meitnerium	darmstadtium	roentgenium	copernicium	nihonium	flerovium	moscovium	livermorium	tennessine	oganesson
-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
					1			1	1		1	1	1			1	1
		57	58	59	60	61	62	63	64	65	66	67	68	69	70	71	
lantha	anoids	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu	
		lanthanum	cerium	praseodymium	neodymium	promethium	samarium	europium	gadolinium	terbium	dysprosium	holmium	erbium	thulium	ytterbium	lutetium	
		139	140	141	144	-	150	152	157	159	163	165	167	169	173	175	
		89	90	91	92	93	94	95	96	97	98	99	100	101	102	103	
actir	noids	AC	I h	Pa	U	NP	Pu	AM	Cm	BK	Ct	ES	FM	IVIC	NO		
		actinium	232	231	238	neptunium	plutonium	americium	curium	Derkellum	californium	einsteinium	rermium		muliadon		
			202	201	200			I –		_			_				1

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).

The Avogadro constant, $L = 6.02 \times 10^{23} \text{ mol}^{-1}$

A student investigated the diffusion of ammonia gas, NH₃, and hydrogen chloride gas, HC*l*.
 Two sets of apparatus were set up as shown below at room temperature and pressure.

The damp red litmus paper in apparatus 1 changed colour after 30 seconds.

How long does it take for the damp blue litmus paper to change colour in apparatus 2?

- A about 21 seconds
- B about 30 seconds
- C about 64 seconds
- **D** The blue litmus paper would not change colour.
- 2 Substance X, melts at 10 °C and boils at 50 °C. It can be purified by distillation as shown in the diagram.

At which point will the particles of X be most regularly arranged?

3 A student wishes to follow the rate of a chemical reaction using the apparatus shown below.

Which of the following reactions allows a student to do so?

- **A** $AgNO_3 + KI$
- **B** CuSO₄ + NaOH
- **C** HCl + Mg
- D HCl + NaOH
- 4 Three separation methods are listed below.
 - 1 obtaining water from sodium chloride solution
 - 2 obtaining solid iodine from a mixture of solid iodine and nickel
 - 3 obtaining solid sodium chloride from aqueous sodium chloride

Which techniques would be involved in these separations?

	1	2	3
Α	distillation	sublimation	evaporation
в	distillation	sublimation	filtration
С	filtration	crystallisation	evaporation
D	sublimation	crystallisation	filtration

5 Three particles and their nuclide notations are shown.

particle	1	2	3
nuclide notation	⁴⁰ ₁₉ X ⁺	³⁹ Y	$^{34}_{16}Z^{2-}$

Which of the following statements is correct about the particles?

- A Particle 1 has more electrons than particle 3.
- **B** Particle 1 and 2 have the same number of neutrons.
- **C** Particle 1 and 3 have the same number of electrons.
- **D** Particle 2 has fewer neutrons than particle 3.

6 The bar chart shows the period of elements from lithium to neon.

Which property of the elements is shown on the chart?

- A number of electron shells
- B number of electrons used in bonding
- **C** proton number
- D relative atomic mass
- Three elements W, X, Y, and Z have consecutive, increasing proton (atomic) numbers.
 Element Y exists as a colourless, monatomic gas at room temperature.
 Which will be the chemical formula of a compound formed between W and chlorine?
 - A WCl
 - B W₂Cl
 - C WCl₂
 - **D** W_2Cl_3
- 8 The mixtures shown in the table are warmed.

In which mixture does a gas form?

Key: \checkmark = gas forms, \varkappa = no gas forms

	NaOH(aq) and NH ₄ C <i>l</i> (s)	NaOH(aq) and Mg(s)	H₂SO₄(aq) and NaC <i>l</i> (s)
Α	\checkmark	\checkmark	×
в	\checkmark	×	\checkmark
С	\checkmark	×	×
D	×	×	\checkmark

9 A paper chromatography experiment was carried out to determine the inks present in a mixture, and the results shown below were obtained.

Which statement about the results is incorrect?

- A Ink 4 is more soluble than ink 3 in the solvent used.
- **B** Inks 1 and 2 contained more than one colour pigment.
- **C** The ink mixture contained inks 1, 3 and 4.
- **D** The R_f value of ink 3 in the solvent used is more than 0.5.
- **10** An aqueous solution containing two salts is found.

A series of tests is carried out to identify the ions present. The results are shown.

no	description	observations			
1	Add dilute nitric acid followed	No effervescence and white precipitate is			
	by aqueous barium nitrate.	observed.			
2a	Add aqueous sodium hydroxide followed by warming.	e White precipitate is formed and dissolves in excess sodium hydroxide to form a colourless solution. No effervescence is observed.			
2b	Add aluminium foil followed by warming.	Effervescence is observed and gas turns moist red litmus paper blue.			
3	Add aqueous ammonia.	White precipitate is formed. The mass of the white precipitate decreases by half when excess ammonia is added.			

Which of the following salts are present in the aqueous solution?

- A zinc sulfate and aluminium nitrate
- B zinc sulfate and calcium nitrate
- **C** ammonium chloride and aluminium sulfate
- **D** calcium chloride and ammonium sulfate

11 The structure of a molecule of a compound containing carbon, nitrogen and hydrogen is shown below.

What is the molecular formula of this compound?

- **A** CN_3H_7 **B** CN_3H_9 **C** C_3H_7N **D** C_3H_9N
- 12 The structures of two materials are shown below.

Which statement is correct?

- A Both substances are hard and rigid.
- **B** Both substances are pure compounds.
- **C** Both substances can conduct electricity in the solid state.
- **D** Both substances contain particles held together by strong electrostatic forces of attraction.
- **13** On adding 50 g of impure limestone, $CaCO_3$ (*Mr* = 100), to excess hydrochloric acid, 6.0 dm³ of CO_2 was evolved at room temperature and pressure.

What is the percentage purity of the limestone?

A 25% **B** 50% **C** 75% **D** 100%

14 Hydrogen gas reacts with chlorine gas to form hydrogen chloride gas.

$$H_2(g) + Cl_2(g) \rightarrow 2HCl(g)$$

What is the final volume of the gas mixture when 20 dm³ of hydrogen is reacted with 30 dm³ of chlorine gas at 100 $^{\circ}$ C?

- **A** 40 dm^3 **B** 50 dm^3 **C** 60 dm^3 **D** 70 dm^3
- 15 Ammonia and excess carbon dioxide can react to form urea and water in a reaction.

$$2NH_3 + CO_2 \rightarrow CON_2H_4 + H_2O$$

The percentage yield of this reaction is 80 %.

What is the mass of ammonia required for this reaction to obtain 60.0 g of urea?

[*M*_r: NH₃, 17; CO₂, 44; CON₂H₄, 60; H₂O, 18]

- **A** 10.6 g **B** 27.2 g **C** 34.0 g **D** 42.5 g
- **16** Aqueous sodium hydroxide reacts with the solution of a certain metal chloride MCl_x , to form a precipitate of the metal hydroxide according to the following equation.

 $MCl_x + xNaOH \rightarrow M(OH)_x + xNaCl$

10.0 cm³ of 3.0 mol/dm³ sodium hydroxide solution reacts exactly with 10.0 cm³ of 1.5 mol/dm³ MC l_x solution.

What is the formula of the metal chloride?

A MCl **B** MCl₂ **C** MCl₃ **D** MCl₄

17 In which equation does the metal oxide act as an acidic oxide?

A
$$K_2O(s) + H_2O(l) \rightarrow 2KOH(aq)$$

- $\textbf{B} \quad \text{Fe}_2\text{O}_3 \ (g) + 3\text{CO} \ (g) \ \rightarrow \ 2\text{Fe} \ (s) + 3\text{CO}_2 \ (g)$
- **C** $Al_2O_3(s) + 6HCl (aq) \rightarrow 2AlCl_3 (aq) + 3H_2O (l)$
- **D** PbO (s) + H₂O (l) + OH⁻ (aq) \rightarrow Pb(OH)₃⁻ (aq)

рН	colour	
0 – 2.5	red	
2.6 - 5.0	yellow	
5.1 – 7.0	orange	
7.1 – 14.0	green	

18 The table below shows the range of colours of an indicator at different pH values.

Which pair of substances can be distinguished using the indicator above?

- A aqueous ammonia and aqueous potassium hydroxide
- B dilute hydrochloric acid and dilute sulfuric acid
- C dilute hydrochloric acid and water
- **D** water and aqueous potassium chloride
- **19** During an electrolysis experiment, the same amount of charge deposited 32.5 g of zinc and 10.2 g of vanadium.

What was the charge on the vanadium ion?

A 2+ B 3+ C 4+	D 5+	ł
----------------	-------------	---

20 Three electrolysis cells are set up. Each cell has platinum electrodes.

A 1 and 2 **B** 1 and 3 **C** 2 only **D** 3 only

21 The diagram shows the apparatus used in an attempt to electroplate a metal ring with chromium.

The experiment did not work.

Which change is needed in the experiment to make it work?

- A add solid chromium(III) chloride to the electrolyte
- **B** increase size of the chromium electrode
- **C** increase the temperature of the electrolyte
- **D** switch the ring and the chromium electrode
- 22 The hydrogen-oxygen fuel cell generates electricity under a continuous supply of hydrogen gas and oxygen gas, as shown in the diagram.

Which of the following correctly shows the direction of electron flow and a suitable electrolyte which can be used in the fuel cell?

	direction of electron flow	electrolyte
Α	from electrode A to B	aqueous sodium hydroxide
в	from electrode B to A	aqueous sodium hydroxide
с	from electrode A to B	dilute sulfuric acid
D	from electrode B to A	dilute sulfuric acid

23 The energy profile diagram of a reversible reaction is shown below.

A 20 kJ/mol **B** 50 kJ/mol **C** 70 kJ/mol **D** 90 kJ/mol

24 In which equation is the sign of enthalpy, ΔH , correctly shown?

	equation	ΔΗ
Α	$2AgCl(s) \rightarrow 2Ag(s) + Cl_2(g)$	positive
В	$CH_4(g) + 2O_2(g) \rightarrow CO_2(g) + 2H_2O(g)$	positive
С	$H_2(g) \to 2H(g)$	negative
D	$H_2O(s) \rightarrow H_2O(l)$	negative

- 25 Which equations below represent redox reactions?
 - $1 \qquad H^{\scriptscriptstyle +} + OH^{\scriptscriptstyle -} \to H_2O$
 - $2 \qquad MnO_4^- + 8H^+ + 5e^- \rightarrow Mn^{2+} + 4H_2O$
 - 3 $Cl_2 + 2Br \rightarrow Br_2 + 2Cl^-$
 - A 1 only
 - B 3 only
 - C 1 and 2 only
 - D 2 and 3 only

26 Small portions of aqueous potassium iodide and acidified aqueous potassium manganate(VII) were added to four different solutions.

The colour cha	inges seen a	are shown	in the ta	ble.
----------------	--------------	-----------	-----------	------

solution number	aqueous potassium iodide	acidified potassium manganate(VII)
1	colourless to brown	purple to colourless
2	colourless to brown	no change observed
3	no change observed	purple to colourless
4	no change observed	no change observed

Which solution(s) contained an oxidising agent?

Α	2 only	B 1 and 2	C 1 and 3	D	3 and 4
---	--------	------------------	------------------	---	---------

27 Antacid tablets neutralise acids. A student investigated the time taken for an antacid tablet to react completely with excess hydrochloric acid under different conditions. The table below shows the results.

experiment number	volume of acid / cm³	concentration of acid / mol dm ⁻³	temperature of acid / °C	reaction time / s
1	50	1.00	25.0	132
2	50	2.00	25.0	65
3	100	2.00	25.0	65
4	50	2.00	35.0	33

What does the experiment show?

- A Increasing the concentration of acid will increase the rate of reaction.
- **B** Increasing the temperature of the reaction does not affect the rate of reaction.
- **C** Increasing the volume of acid will decrease the rate of reaction.
- **D** The addition of a catalyst will increase the rate of reaction.
- 28 A student has five reagents.
 - dilute hydrochloric acid
 - dilute sulfuric acid
 - dilute nitric acid
 - solid calcium carbonate
 - solid copper(II) carbonate

How many soluble salts can be prepared?

Α	3	В	4	С	5	D	6

metal	reaction with cold water	reaction with acids	action of heat on carbonate of metal
Р	reacts vigorously	reacts vigorously	decomposes to metal oxide
Q	no reaction	reacts moderately	decomposes to metal oxide
R	reacts vigorously	reacts vigorously	no visible reaction
S	no reaction	no reaction	decomposes to metal

29 The table below gives some information about four metals P, Q, R and S.

What is the order of reactivity of the four metals?

	most reactive			least reactive
Α	Р	R	Q	S
В	R	Р	Q	S
С	R	Q	Р	S
D	S	Q	Р	R

30 An experiment was set up as shown in the diagram below.

Which tube will have the highest water level after one month?

31 The experimental set-up below shows the reduction of a metal oxide by hydrogen.

Which of the following oxides cannot be reduced by the method shown above?

- A AgO B FeO C PbO D ZnO
- **32** Elements X, Y and Z are in the same period of the Periodic Table.

Gaseous X exists as diatomic molecules. Oxides of Y react with both acid and alkali. Oxides of Z dissolve in water to form solution with pH > 7.

In which order do the elements appear in the Periodic Table?

- $\textbf{A} \quad X \ \rightarrow \ Y \ \rightarrow \ Z$
- $\mathbf{B} \quad \mathbf{Y} \to \mathbf{X} \to \mathbf{Z}$
- $\textbf{C} \quad Z \ \rightarrow \ X \ \rightarrow \ Y$
- $\textbf{D} \quad Z \, \rightarrow \, Y \, \rightarrow \, X$

33 In the equation shown, X and Y represent elements in Group 17 of the Periodic Table.

 $X_2(aq) + 2NaY(aq) \rightarrow Y_2(aq) + 2NaX(aq)$

	Х	Y
1	iodine	chlorine
2	bromine	iodine
3	chlorine	bromine
4	bromine	chlorine

Which pair of elements could be X and Y?

A 1 and 3 B 1 and 4 C 2 and 3 D 2 and

34 How many of the following processes will lead to an increase in greenhouse gas emissions?

		decomposition of vegetation		fermentation of glucose	photosynthesis			
		polymerisation		respiration	neutralisation			
Α	1	В	2	C 3	D 4			

35 Which of the following statements about a homologous series is correct?

- A The melting and boiling point increases with increasing relative molecular mass.
- **B** The members have similar physical properties.
- **C** The members have the same molecular formula.
- **D** The relative molecular masses of consecutive members differ by 12.
- **36** How many different isomers of C_5H_{10} are shown below?

structure 1							structure 2						
	ł	Η	Н	Н	Н	Н		н	н	Н	Н	Н	
		L		T	Τ	I		Ĩ	T	Ĩ	T	T	
	H – (C =	- C -	- C –	- C -	- C – H		H – C -	- C :	= C -	- Ç -	– Ç –	H
				T	Т	1							
				Н	Н	Н		н			н	н	

- **37** When crude oil is fractionally distilled, which list best describes the mixture of compounds collected at the bottom of the fractionating column?
 - A Short chain molecules, low viscosity, high flammability
 - **B** Short chain molecules, low boiling point, low flammability
 - **C** Long chain molecules, high flammability, high boiling point
 - D Long chain molecules, high viscosity, high boiling point

- **38** The following chemicals are available in the laboratory.
 - 1 aqueous bromine
 - 2 Universal Indicator solution
 - 3 magnesium powder
 - 4 sodium carbonate

Which of these chemicals can be used to distinguish between propene and propanoic acid?

- **A** All of them **B** 1 only **C** 1 and 4 only **D** 1, 2 and 3 only
- **39** The structure of a compound associated with the smell of raspberries is shown below.

Which reactants are suitable for synthesising the above compound in the laboratory?

- A butanol and methanoic acid
- B methanol and butanoic acid
- C methanol and propanoic acid
- D propanol and methanoic acid
- 40 The partial structure of a polymer is shown below.

End of Paper