
Sec 4 Computing Prelim 2019 P2 Ans Scheme

1 E3=TODAY()

[1m]

2 E12=ROUND(B13/(B12^2),1) OR ROUND(B13/(B12*B12),1) OR
ROUND(B13/POWER(B12,2),1)
-1m if not shown in 1dp or brackets missing

[2m]

3 E13=VLOOKUP(E12,D25:E27,2,TRUE)

[1m]

4 E15=IF(AND(B14<120,B15<80),E31,IF(AND(B14>140,B15>90),E33,E32)
-1m if not referenced using cell address

[2m]

5 E20=SUM(B20, B21) OR SUM(B20:B21)

[1m]

6 E21= ROUND(B21/E20,2) OR B21/E20 with formatting to zero decimal place
-1m if not shown in percentage/whole numbers
-1m if not referenced using cell address

[2m]

7

[1m]

8b

8a

number = int(input("Enter a positive integer: "))

while int(number)<=0:

 number=int(input("Re-enter a positive integer: "))

count=0

print("Factors of this integer are: ")

for factor in range(2, number):

 if number % factor == 0:

 count+=1

 print(factor)

print("There are a total of {} factors.".format(count))

[1m]
[1m]

[1m]

[1m]

9b

9a

number = int(input("Enter a positive integer: "))

print("Factors of this integer are: ")

for factor in range(2, int(number**0.5)+1):

 if number % factor == 0:

 print(factor,"x",number//factor)

9a:
1m – find corresponding factor using floor division
1m – proper output, line by line
1m – output both

9b:
1m – identify repeated factors or use sqrt,
1m – remove repeated,
1m – exclude 1 and itself

[3m]

 [3m]

10 print(" ~~Drinks Menu~~ ")

drinks=["Hot Coffee", "Hot Tea", "Canned Drink", "Bottled

Drink"]

prices=[4,3,2.5,3.5]

for option in range(len(drinks)):

 print(str(option+1)+"-

"+drinks[option]+"\t$"+str(prices[option]))

choice=int(input("\nEnter your choice: "))

owe=prices[choice-1]

print("\n"+drinks[choice-1]+" costs $"+str(owe)+".")

paid=0

valid=["0.1","0.2","0.5","1","2","5","10"]

while paid<owe:

 cash=input("Please insert cash(\"x\" to cancel): ")

 if cash in valid:

 paid+=float(cash)

 elif cash=="x":

 print("Your order is cancelled.")

 owe=0

 else:

 print("Invalid currency!")

 print("\nBalance payment is $"+str(owe-paid)+".")

if paid>owe:

 print("\n$"+str(paid-owe)+" has been returned to you.")

if cash!="x":

 print("Your "+drinks[choice-1]+" has been served.

Enjoy!")

[1m]

[1m]

[1m]

[1m]

[1m]

[1m]

[1m]
[1m]
[1m]

[1m]

A

B

C

D

D

E

F

G
I H

J

D

11 Ask user for an input date (e.g. DD/MM/YYYY) and store it appropriately.
Validation if input has D, M and Y being digits and length is 10.
Use while-loop to ask user to re-enter input if valid
Separate DD, MM and YYYY using indexing or slicing and store in appropriate variables
Use mod (%) in conditions to determine leap year
Use if-else logically to determine leap year
Use list to store data on how many days in a month, and 1 ≤ month ≤ 30
Use if-else logically to determine if day corresponds to month, e.g. 1 ≤ day ≤ 30
Use leap year to decide if 29 Feb is valid
Output appropriately to inform user if it is leap year and/or if date is valid
(Any 8 points to score maximum 8m)
-1m for poor programming habits, e.g. improper variable name
-1m for any syntax error that disrupts the proper running of the program
-1m for any logical error that contradicts the program requirements in the question

[1m]
[1m]
[1m]
[1m]
[1m]
[1m]
[1m]
[1m]

12 Input prompts are appropriate, e.g. ask for DD/MM/YYYY format
Date validity output correctly and appropriately

[1m]
[1m]

13 Initialize counter for counting leap years
For-loop or while-loop with appropriate range, 1582 up to previous year
Increasing counter logically each time the loop is running
Output leap year results with an appropriate statement

[1m]
[1m]
[1m]
[1m]

14 Initialize days to store total number of days since 1 Jan 1583, add days in current month
Calculate total days from 1 Jan 1583 to 1 Jan of current year assuming 365 days per year
Add extra days during leap years into the total days
For-loop to add total number of days in months of the current year up to current month
Using if-else appropriately to determine if date in current year has extra day
Use list to store names of the days of the week, in the correct order
Use mod (%) to determine which day of the week and output correct day of the week
(Any 6 points to score maximum 6m)

[1m]
[1m]
[1m]
[1m]
[1m]
[1m]

