

General Certificate of Education Advanced Level Higher 2

PHYSICS 9646

SUGGESTED SOLUTIONS

October/November 2013

Paper 1 Multiple Choice

Question	Key	Question	Key
1	Α	21	В
2	С	22	В
3	Α	23	С
4	D	24	В
5	С	25	Α
6	В	26	Α
7	Α	27	D
8	D	28	Α
9	С	29	Α
10	Α	30	В
11	В	31	Α
12	D	32	Α
13	Α	33	В
14	Α	34	В
15	D	35	В
16	С	36	С
17	С	37	В
18	С	38	В
19	В	39	С
20	Α	40	D

Notes

Q17: The mass at the end is 0.4 of the mass at the beginning, so 0.6 of the initial mass escapes. The equation pV=nRT needed to be used throughout.

Q27: Most candidates chose option B, 12 ohms, indicating, perhaps that these candidates took into account the increase in resistance either as a result of the increase in length or the decrease in width, but not both.

Paper 2 Structured Questions

Qns		Marks
1(a)	$s = ut + \frac{1}{2}at^2$	M1
	$= 0 + \frac{1}{2} (1.5)(2^2) = 3.0 \text{ m}$	M1
	height = s (sin 40°) = 1.9 m	A 1
1(b)(i)	a = 0	
	Resultant Force = 0	
	N = mg = (95)(9.81) = 930 N	A 1
1(b)(ii)	Man has zero acceleration and hence experienced no resultant force. Since there are only 2 forces, the normal contact force must be of the same magnitude as weight.	A1
1(c)(i)	Three forces: normal contact force, weight, and friction of ground on man.	A1
	Note: Existence of friction between man and the floor of the cable car was rarely mentioned. Some common errors include erroneous additional quantities such as air resistance and driving force.	
1(c)(ii)	Horizontal frictional force will cause the man to accelerate horizontally. The normal contact force is larger in magnitude than the man's weight, resulting in a vertical acceleration.	A 1
	The resultant force causes the man to accelerate upwards along the cable.	A 1
1(d)	Distance moved during deceleration, s , $s = \frac{1}{2}(v + u)t = \frac{1}{2}(0 + 3.0)(3) = 4.5$	M1
	total distance moved in direction of motion = 3.0 + (3.0 x 120) + 4.5 = 367.5 m	
	vertical distance travelled = $367.5(\sin 40^\circ) = 236 \text{ m}$ Gain in potential energy = $mgh = (95)(9.81)(236)$	M1
	$= 2.2 \times 10^5 \mathrm{J}$	A 1
1(e)(i)		A 1
	0	
	0 Comment: Initial gradient is 0 2.0 t/s	

Qns		Marks
1(e)(ii)	h 0 2.0 Comment: Must not start with h = 0 122 t/s	A1
1(e)(iii)	h 0 122 125 Comment: Must not start with h = 0 t/s	A1
2(a)	Product of force and the time duration of the impact. Comment: Some answers were unacceptable as definition because the wording given was imprecise, for example, impulse was defined as the force acting for or over a certain period of time.	B1
2(b)(i)	Magnitude of change in momentum, Δp	C1
	= Area of inverted triangle = $\frac{1}{2}(0.32)(0.50) = 0.080 \text{ N s}$ $\Delta p = m(\Delta v) \rightarrow \Delta v = \frac{\Delta p}{m} = \frac{0.080}{0.150} = 0.53 \text{ ms}^{-1}$	C1 A1
		Α'
2(b)(ii)1.	Force increases at a uniform rate in the negative direction. Velocity decreases at an increasing rate from 0.267 ms ⁻¹ until it comes to a rest at $t = 0.50$ s	B1 B1
2(b)(ii)2.	Force increases at a uniform rate in the positive direction. Velocity increases from rest at a decreasing rate until it reaches 0.267 ms-1 in the negative direction.	B1
3(a)(i)	Resultant force, of constant magnitude, acting on object must point in a direction that is perpendicular to the direction of motion of the object towards a centre.	A1
	Notes: It is insufficient to mention only the centripetal force without addressing the resultant force.	

Qns		Marks
3(a)(ii)	Acceleration is the rate of change of velocity with respect to time. Velocity is vector quantity. Here, it has constant magnitude but changing direction.	A 1
3(b)(i)	Gravitational force acting on object provides the centripetal force necessary for the object to move in a circular motion $GMm = mv^2$	M 1
	$F_G = F_C \to \frac{GMm}{r^2} = \frac{mv^2}{r}$	C1
	$r = \frac{GM}{v^2} = \frac{(6.67 \times 10^{-11})(6 \times 10^{24})}{2500^2} = 6.4 \times 10^7 \text{ m}$ Note: Must mention gravitational force provides the centripetal force.	A 1
3(b)(ii)1.	Potential energy of satellite, U , decreases. $U = -\frac{GMm}{r}$. When r is smaller, U becomes more negative, U decreases.	A1
3(b)(ii)2.	Kinetic energy of the satellite, $E_{\rm k}$ increases. $E_k = \frac{GMm}{2r} = -\frac{1}{2}U$. When r is smaller, $E_{\rm K}$ increases.	A1
4(a)	The internal energy of a substance is the sum of the kinetic energy due to the random motion of the molecules and potential energy due to intermolecular forces of attraction Note: Examiners deem "sum" and "random" as key words to the definition.	A1
4(b)(i)	$pV = nRT = \frac{M_{total}}{m_{molar}}RT$	C1
	$M_{total} = \frac{pVm_{molar}}{RT} = \frac{(10^5)(0.075)(0.030)}{(8.314)(25 + 273.15)}$	C1
	= 0.091 kg	A 1
4(b)(ii)	The oven is not air-tight but has constant volume. Some air leaves the oven when heated. $pV = nRT \rightarrow pV = \frac{M_{total}}{m_{molar}}RT \rightarrow pV = \frac{\rho V}{m_{molar}}RT \rightarrow \frac{pm_{molar}}{R} = \rho T$	C1
	$\frac{\rho_{25}}{\rho_{200}} = \frac{200 + 273.15}{25 + 273.15} = 1.59$	A 1

Qns		Marks
5(a)	Notes: Must use ruler to construct the field lines. Field lines must touch the plates and have even spacing between them to demonstrate a constant field.	A1
5(b)(i)	$F = QE = Q\left(\frac{\Delta V}{d}\right) = (1.6 \times 10^{-19}) \left(\frac{24}{12 \times 10^{-3}}\right)$	C1
	$= 3.2 \times 10^{-16} \text{ N}$	A1
5(b)(ii)	$W = Fd = (3.2 \times 10^{-16})(12 \times 10^{-3}) = 3.8 \times 10^{-18} \text{ J}$	A1
5(b)(iii)	Initial $KE = E = \frac{1}{2}mv_i^2 = \frac{1}{2} \times 9.11 \times 10^{-31} \times (4.5 \times 10^6)^2$ = $9.22 \times 10^{-18}J$ Electron slows down as it moves from A to B due to repulsion $Final KE = 9.22 \times 10^{-18} - 3.8 \times 10^{-18}E = 5.38 \times 10^{-18}J$	M1
	$speed = \sqrt{\frac{2E_K}{m}} = \sqrt{2 \times 5.38 \times \frac{10^{-18}}{9.11} \times 10^{-31}} = 3.44 \times 10^6$	A1
6(a)	Emission of electrons from a cold metal surface when electromagnetic radiation of sufficiently high frequency falls on it.	B1

Qns					Marks
6(b)		to overcome wo	etal need to be suppl ork-function energy b		B1
			amount of energy to ns must possess this		B1
	Photons with this m	inimum amount of st have frequency	of Planck constant and energy must have a y above this thresho	minimum frequency,	B1
		that hf was the e	ne Einstein photoeled nergy of a photon. Ma ergy.		
7(a)	15 ℃.		with θ. R reaches a		B1
			creasing rate with <i>θ. 4</i> 200 °C, <i>R</i> decreases a		B1
7(b)	when $R = 1780 \ \Omega$, $\theta = 50^{\circ}$ C, so $1780 \times 50 = 89\ 000$ when $R = 240 \ \Omega$, $\theta = 150^{\circ}$ C, so $240 \times 150 = 36\ 000$			M 1	
	since the product o	$fR\theta$ is not the sar	me, <i>R</i> is not inversely	proportional to θ	A 1
7(c)(i)	R/Ω	θ/°C	$T^{-1}/10^{-3} K^{-1}$	$ln(R/\Omega)$	A1
	500	120	2.54	6.21	
	400	130	2.48	5.99	
	310	140	2.42	5.74	
	250	150	2.36	5.52	
			0.04		
	200	160	2.31	5.30	
	200 158	160 170	2.31	5.30 5.06	

Qns		Marks
7(c)(ii)	6.3 6.1 5.9 5.7 In (<i>R</i> /Ω) 5.5 5.3 5.1 4.9 4.7 2.0 2.1 2.2 2.3 2.4 2.5 2.6 7.1/10 ³ Κ ¹	A1
7(d)(i)	$R = Ae^{\frac{E_g}{2kT}}$ $\ln R = \frac{E_g}{2k}(T^{-1}) + \ln A \text{ (Linearization)}$ The proposal is true if a graph of $\ln(R)$ against T^{-1} is linear. The graph of $\ln(R)$ against T^{-1} shown in Fig. 7.3 is linear for θ above 100°C. This supports the proposal.	M1 A1

Qns		Marks
7(d)(ii)1.	Gradient = $\frac{\Delta y}{\Delta x} = \frac{6.10 - 5.00}{(2.500 - 2.250) \times 10^{-3}}$	M1
	= 4400	M1
	$E_g = 2k(4400) = 2(1.38 \times 10^{-23})(4400) = 1.21 \times 10^{-19} \text{ J} = 0.76 \text{ eV}$	A1
7(d)(ii)2.	$5.00 = \ln A + 4400(2.250 \times 10^{-3}) \rightarrow A = 0.0074 \Omega$	A1
7(e)	n-type semiconductor is doped with impurity that has donor energy level just below conduction band.	A1
	There is a much greater increase in mobile charge carriers (electrons) in conduction band and hence lower resistance in a n-type semiconductor as compared to an intrinsic semiconductor at any temperature.	A1
7(f)	As temperature increases, no change in the number of mobile charge carriers (electrons), but there is an increase in lattice ion vibration. Resistance increases with rise in temperature	A1

Qns					Marks
8	Variables θ as independent va R as dependent va Keep length of wire	ıriable			
	Measurements Labelled diagram of apparatus: wire in oil bath or oven or beaker with water and source of heat. Circuit diagram to measure resistance. Use thermometer to measure the temperature of wire/oil/oven. (Could be on diagram if labelled.) Method to determine resistance from circuit, e.g. read off ohmmeter/ $R = V/I$ Method to determine R_0 e.g. use ice-water mixture.				
	Do not allow ice (a	110W 100 at 0 0 0	Tricking 1967.		
	R against θ	R/R_0 against θ	θ against <i>R</i>		
	α = gradient / R_0	α = gradient	$\alpha = 1/(R_0 \times \text{gradient})$ $\alpha = -1/(y\text{-intercept})$		
	prevent injury) from water; do not touch Additional detail Use long/thin wire Stir liquid Wait for temperatu Relationship is vali Relationship is vali	n hot water/wire; n hot wire/beaker to increase resist re to stabilise d if straight line, d if straight line r	tance provided plotted graph not passing through orig l expression must be co	is correct gin, provided	

Paper 3 Longer Structured Questions

Qns		Marks
1(a)	Work done per unit mass in bringing a small test mass from infinity to that	B1
1(b)	point. Loss in gravitational potential energy of rock = Gain in kinetic energy of rock	M1
	$0 - \left(-\frac{GM_{Mars}m_{rock}}{r}\right) = \frac{1}{2}m_{rock}v^2$	
	$v = \sqrt{\frac{2GM_{mars}}{r}} = \sqrt{\frac{2(6.67 \times 10^{-11})(6.4 \times 10^{23})}{\frac{1}{2}(6.8 \times 10^{3} \times 10^{3})}}$	
	$= 5010 \text{ m s}^{-1}$	A 1
	Notes: Candidates were expected to explain their work in terms of changes in potential energy and in kinetic energy. Merely writing $E_P = E_K$ is not enough of an explanation of method.	
1(c)(i)	$\frac{3}{2}kT = \frac{1}{2}m < c^2 > \to T = \frac{1}{3}\frac{m}{k} < c^2 > = \frac{4u < c^2 >}{3k}$	M1
	$= \frac{4(1.66 \times 10^{-27})(5010^2)}{3(1.38 \times 10^{-23})} = 4030 \text{ K}$	A 1
1(c)(ii)	Yes.	A 1
	Surface temperature of Mars is similar or lower than Earth's 300 K. Hence, there is insufficient ambient temperature for helium-4 to escape which requires 4030 K to do so.	A 1
2(a)(i)	From Fig. 2.2, the power dissipated in the resistor when $R=4.0~\Omega$ is 9.0 W	
	Since the resistor is in series with the battery,	
	current in the circuit, I_1 = current in the resistor.	M1
	$P_R = I^2 R \to I = \sqrt{\frac{P_R}{R}} = \sqrt{\frac{9}{4}} = 1.5 A$	M1
2(a)(ii)	$P_T = 13.5 \text{W for } R = 4.0 \Omega$	M1
	$P_T = IE \to E = \frac{P_T}{I} = \frac{13.5}{1.5} = 9.0 \text{ V}$	A 1
2(b)(i)	Power dissipated by internal resistance of battery	A 1
	Note: Incorrect to say power dissipated by battery or wires.	

Qns		Marks
2(b)(ii)	$E = I(R+r) \to r = \frac{E}{I} - R$	M1
	$r = \frac{9}{1.5} - 4 = 2.0 \Omega$	A 1
2(c)(i)	2.0 Ω	A 1
2(c)(ii)	$\frac{P_R}{P_T} \times 100\% = \frac{2}{4} \times 100\% = 50\%$	A 1
2(c)(iii)	As resistance increases from 4 to 10, efficiency of power transfer increases.	A1
3(a)(i)	area of cross-section 1.5 mm ² 20° uniform magnetic flux density 5.2 × 10 ⁻² T	A1
0(-)(")	Note: A ruler should always be used to draw a straight line.	
3(a)(ii)	$F = BIL \sin \theta$ $\frac{F}{L} = BI \sin 90^{\circ} = (5.2 \times 10^{-2})(7.5)$ $= 0.39 \text{ Nm}^{-1}$	M1 A1
3(b)(i)	Total number of electrons per unit length of wire	
	= (number of free electrons per unit volume)(volume of a unit length of wire) $= (7.8 \times 10^{28})[1.5 \times (10^{-3})^2] = 1.17 \times 10^{23}$ Force on each electron = (total force)/(total number of electrons)	M1
	$= \frac{0.39}{1.17 \times 10^{23}} = 3.3 \times 10^{-24} \text{ N}$	A 1
	Note: This is an example where candidates are expected to derive a given result. Questions of this sort require an explanation of the working presented.	

Qns		Marks
3(b)(ii)	F = Bqv	
	$F = 2.2 \times 10^{-24}$	M1
	$v = \frac{F}{Bq} = \frac{3.3 \times 10^{-24}}{(5.2 \times 10^{-2})(1.6 \times 10^{-19})}$	
	$Bq = (3.2 \times 10^{\circ})(1.0 \times 10^{\circ})$	
	$= 4.01 \times 10^{-4} \text{ ms}^{-1}$	A1
2()		
3(c)	Free electrons are uniformly distributed in the wires.	A 1
	When switch is closed, battery produces an electric field through the wire.	A 1
	All electrons including those near the lamp, move simultaneously. Hence	Ai
	lamp is lit almost immediately.	
	Note: The basic concept is that the electric field in the wire, produced by the	
	battery, would cause all the electrons to move almost simultaneously.	
4(a)	Induced e.m.f. in a conductor is directly proportional to the rate of change of	A1
	magnetic flux linkage.	A 1
4(b)(i)		M1
.(2)(.)	r.m.s. output voltage = $\frac{9.0}{\sqrt{2}}$	
	·	
	$\frac{N_P}{N_S} = \frac{V_P}{V_S} \rightarrow N_P = N_S \left(\frac{V_P}{V_S}\right) = 260 \left(\frac{240}{\frac{9}{\sqrt{2}}}\right)$	M1
	$N_S V_S $	
	= 9800	A 1
	_ 7000	
4(b)(ii)	An input current sets up a magnetic field in the primary coil. This forms a	B1
	magnetic flux linkage at the secondary coil. The magnetic flux linkage at the	
	secondary coil is in phase with the current and p.d from the primary coil.	
	According to Faraday's law, the <i>e.m.f</i> at the secondary coil is directly	B1
	proportional to the rate of change of magnetic flux linkage.	ы
	The induced emf is not in phase with the input potential difference. The output potential difference is given by the induced <i>e.m.f.</i> Hence the output	A 1
	potential difference is not in phase with the input potential difference.	
	Note: This question asked candidates to compare the phase of the input and	
	output potential difference, but in most of the incorrect answers, the word	
	phase was not used or included. Very few candidates referred to the rate of change of flux in the core giving rise to the output <i>e.m.f.</i>	
L	change of hazin the core giving not to the output chinh	

Qns		Marks
5(a)(i)	$E = \frac{hc}{\lambda}$	
	λ	
	$\lambda = \frac{hc}{E} = \frac{(6.63 \times 10^{-34})(3 \times 10^{8})}{4.53 \times 10^{-14}}$	M1
	$\lambda = \frac{1}{E} = \frac{1}{4.53 \times 10^{-14}}$	141 1
	$=4.39\times10^{-12} \text{ m}$	A 1
5(a)(ii)	$p = \frac{h}{\lambda} = \frac{6.63 \times 10^{-34}}{4.39 \times 10^{-12}}$	M1
	$p = \frac{1}{\lambda} = \frac{1}{4.39 \times 10^{-12}}$	
	$= 1.51 \times 10^{-22} \text{ Ns}$	8.4
	= 1.51 × 10 N3	A 1
5(b)	The initial total momentum of the nucleus is zero.	B1
	By Principle of Conservation of Momentum, the nucleus must move in the	
	opposite direction because the photon has momentum and the net external	B1
	force is zero.	
6(a)(i)	Draw the line of best fit	M1
	Points (0.20, 0.60) and (1.38, 0.96) lie on the line of best fit.	M1
	Gradient = $\frac{\Delta y}{\Delta r} = \frac{0.96 - 0.06}{1.38 - 0.20} = 0.762 \text{ ms}^{-2}$	
	Gradient $-\frac{1}{\Delta x} - \frac{1}{1.38 - 0.20} = 0.762 \text{ ms}$	M1
	Since $s = ut + \frac{1}{2}at^2 = 0 + \frac{a}{2}t^2$	
	2 2	M1
	(Correct substitution)	
	$a = 2(0.762) = 1.52 \mathrm{ms^{-2}}$	A 1
		2.1.
6 () (11) :		
6(a)(ii)1.	Data points are scattered about the line of best fit.	A 1
6(a)(ii)2.	Line of best fit does not pass through the origin.	A 1
6(a)(iii)	Best fit line is the weighted average of the data points and compensates for	A 1
	random errors which can be both over and under estimates of the true value.	
6(b)(i)	$F_R = 280 + 1.2v^2 = 280 + 1.2(20^2) = 760 \text{ N}$	A 1

Qns		Marks
6(b)(ii)	4.0	
	3.0 force/kN 2.0 1.0 F _D V/ms ⁻¹	A 1
6(b)(iii)1.	Maximum speed is when the driving force is equal in magnitude to the	M1
o(b)(iii)1.	resistive force.	IVI I
		A 4
	The point of intersection in the 2 graphs is $v = 31.5 \text{ ms}^{-1}$ (Required to explain answer)	A 1
6(b)(iii)2.	$P = F_D v = F_R v = (1.5 \times 10^3)(31.5)$	M1
	$=47.3 \times 10^3 \text{W}$	A 1
6(b)(iii)3.	Read off graph, $F_R = 750 \text{ N}$	M1
		M1
	Net force $F_{net} = ma = F_D - F_R$	141 1
	$a = \frac{F_D - F_R}{m} = \frac{2.45 \times 10^3 - 750}{950} = 1.79 \text{ ms}^{-2}$	A 1
	m 950	
6(c)	There is a component of weight which acts down the slope that acts in the	М1
	opposite direction of the driving force.	
	For the same newer output of the car, the driving force must be larger to	
	For the same power output of the car, the driving force must be larger, to equal the vector sum of the component of weight down the slope and the	M1
	resistive force.	
	TOSISTIVO TOTOG.	
	The driving force is inversely proportional to the maximum speed possible.	M1

Qns		Marks
7(a)	Vertical upward force exerted by the surrounding fluid when a body is	D4
	submerged in a fluid.	B1
	It is due to the difference in pressure exerted by the fluid at the top and	
	bottom surfaces of the submerged body.	B1
7(b)	pressure at bottom surface $p_{bottom} = h\rho g + p_{atm}$	B/14
	pressure at liquid surface $p_{surface} = p_{atm}$	M1
	Difference in force exerted $F = \Delta p(A) = h\rho gA$	M1
	Since tube is floating,	
	magnitude of weight is same as magnitude of force acting on tube bottom:	
	magnitude of weight is same as magnitude of force acting of tube bottom.	_
	$mg = h\rho gA$	A 1
	$\therefore m = h \rho A$	
	m = npn	
7(-)(:)		
7(c)(i)	The magnitude of <u>acceleration a is directly proportional to magnitude of</u>	B1
	displacement from the equilibrium position x with the constant of	
	proportionality being $\left(\frac{\rho Ag}{m}\right)$. The <u>acceleration a is in the opposite direction</u>	B1
	, ,	5.4
	to displacement from equilibrium position x denoted by the negative sign.	B1
7(c)(ii)	ρ_{Ag}	M1
(-)(-)	by comparing $a=-\omega^2 x$ with $a=-\left(\frac{\rho Ag}{m}\right)x$	
	$\sqrt{a_A a}$	
	$\omega = 2\pi f = \sqrt{\frac{\rho Ag}{m}}$	
	$f = \frac{1}{2\pi} \sqrt{\frac{\rho Ag}{m}}$	
	$\int -2\pi \sqrt{m}$	M1
		141 1
	1 $(1.0 \times 10^3)(4.2 \times 10^{-4})(9.81)$	A 1
	$= \frac{1}{2\pi} \sqrt{\frac{(1.0 \times 10^3)(4.2 \times 10^{-4})(9.81)}{32 \times 10^{-3}}} = 1.8 \text{ Hz}$	AI
7(d)(i)1.	period of oscillation = 0.5000 s	M1
	1 1	
	frequency $f = \frac{1}{T} = \frac{1}{0.5000} = 2.000 \text{ Hz}$	A 1

Qns		Marks
7(d)(i)2.	ρ_{new} f_{new}	
	$\frac{\rho_{new}}{\rho_{old}} = \frac{f_{new}}{f_{old}}$	
	N The state of the	
	$(f_{\text{new}})^2$	C1
	$\rho_{new} = \rho_{old} \left(\frac{f_{new}}{f_{old}}\right)^2 = (1.0 \times 10^3) \left(\frac{2}{1.8}\right)^2$	0.
	1 22 103 1 = 3	A 1
	$= 1.23 \times 10^3 \text{ kg m}^{-3}$	Α1
7(d)(ii)1.	The water waves formed due to the oscillating cylinder transports energy	A 1
	away from the oscillating system.	
	Damping occurs. Fluid friction acts over the submerged surfaces of the tube	
	when there is relative motion between tube and fluid. Work is done against	A 1
	dissipative force of fluid friction, removes energy from oscillating system.	
	Note: Challenging question for most students. Many referred to friction or	
	viscous forces without giving any information as to where these forces act. Some thought that upthrust would act as a dissipative force.	
	осто поседин или при пости пости пости пости пости	
7(d)(ii)2.	A E — E — E	
/ (u)(ii)2.	$\Delta E = E_{t=0} - E_{t=1}$	C1
	$1 \qquad $	
	$= \frac{1}{2}m\omega^2 x_0^2 - \frac{1}{2}m\omega^2 (x_0')^2 = \frac{1}{2}m\left(\frac{2\pi}{T}\right)^2 (x_0^2 - (x_0')^2)$	
		C1
	$= \frac{1}{2}(32 \times 10^{-3}) \left(\frac{2\pi}{0.5000}\right)^2 (10^{-4})(1.50^2 - 0.85^2)$	
	2 (0.5000)	
	= 0.000386 J	A 1
8(a)(i)		A3
ا ا	wavefront	7.0
	direction of	
	travel of waves	
	' ' '	
	(No observable diffraction since the slit width >> wavelength)	
	4 wavefronts must be clearly drawn	

Qns		Marks
8(a)(ii)	More circular wavefronts, centred on gap	A1
	Larger angle of spreading	A1
8(b)(i)	Coherent sources emit waves	A1
	III at the second of the secon	
	that have a constant phase difference	A1
8(b)(ii)	S ₁ • NN S ₂ •	
	AA – Crest meets Crest NN – Crest meets Trough	A1 A1
8(c)(i)	fringe separation = 1.3 mm,	C1
	$x = \frac{\lambda D}{a}$	C1
	so, $\lambda = \frac{ax}{D} = \frac{(1.3 \times 10^{-3})(1.2 \times 10^{-3})}{247 \times 10^{-2}}$	C1
	$=6.3 \times 10^{-7} \text{m}$	A1
8(c)(ii)	D must be much larger than a (> 1000 times)	A1
8(c)(iii)1.	Dark fringe is now brighter	A1
_ (- / (/ = .	Bright fringe is less bright	A1
8(c)(iii)2.	The bright fringes become less bright.	A1
	More fringe patterns appears	A1
8(c)(iii)3.	D and hence fringe separation no longer constant. Fringe separation changes linearly with D. (smaller D, smaller separation and brighter fringes and vice versa)	A1 A1