## Sec 4 Express Physics Prelim Examination 2021 – Marking Scheme

## Paper 2 Section A (50 marks)

| Qn       | Solutions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Mark<br>Allocation                                                  |
|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|
| 1(a)     | Velocity is a <b>vector</b> quantity and hence it has a <b>magnitude (= 3.0 m/s</b> ) and <b>direction</b> (which is <b>due North</b> ).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | A1                                                                  |
| 1(b)     | scale : 1cm represent 0.5 m/s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | B1<br>(vector<br>diagram<br>constructed &<br>labelled<br>correctly) |
|          | magnitude = 2.2 m/s ( $\pm 0.2$ cm)<br>direction = 42° due west from the North ( $\pm 2^{\circ}$ )<br>Alternative method: using cosine rule and sine rule respectively<br>$v = \sqrt{2^2 + 3^2 - 2(2)(3)\cos 45^{\circ}}$<br>= 2.1 m/s<br>( $\sin \theta / 2.0 = \sin(45^{\circ}) / 2.1 \Rightarrow \theta = 42^{\circ}$ )<br>the following will result in loss of marks<br>1. wrong orientation of the vector diagram<br>2. labelling length instead of velocity<br>3. did not indicate angles on vector diagram<br>4. drew solid lines unnecessarily<br>5. resultant velocity was not indicated with a double arrow<br>6. inappropriate scale used, resulting in a small diagram | A1<br>A1                                                            |
| 2(a)(i)  | The moment of a force is the product of the force and the perpendicular distance from the pivot to the line of action of the force.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | B1<br>Any symbols<br>used must be<br>defined.                       |
| 2(a)(ii) | The filled buckets that cause moments about the axle are: buckets 2, 3 and 4.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | A1                                                                  |

| 2(a)(iii) | The larges<br>= (weight<br>of action o<br>= (40)(10)<br>= 640 Nm                           | M1<br>A1                                                                                                                                                                    |                                |                                                                             |
|-----------|--------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|-----------------------------------------------------------------------------|
| 3(a)      | Insert the<br>the therm<br>with the m<br>compartm<br>the compa<br>When the<br>steady, it i | B2<br>(deduct 1<br>mark for any<br>omission of<br>the three<br>important<br>points)                                                                                         |                                |                                                                             |
| 3(b)      | example                                                                                    | physical property that changessubstance or object<br>involvedevolumea liquidresistancea metalelectromotive force<br>(spelled out)a thermocouple                             |                                | B1<br>(any one of the<br>property and<br>the<br>corresponding<br>substance) |
| 3(c)      | mass of wa<br>Assumptio<br>heat is lost<br><i>m</i> x 4.2 x (                              | hter = $m$<br>n: Heat lost by water = Heat gain<br>from the water to the surroundir<br>$90-82) = 2.5 \times (82-20)$<br>m = 4.6  g                                          | n by thermometer and no<br>ng. | M1<br>A1                                                                    |
| (a)       |                                                                                            | B2<br>(correct<br>construction<br>of the 2<br>incident rays<br>from the line<br>deeper down<br>below the<br>image,<br>incident rays<br>bent towards<br>the normal,<br>arrow |                                |                                                                             |

|           | (Note:<br>Due to refraction, the image line appears shorter than the actual line.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | indicated on<br>ray. Deduct 1<br>mark for any<br>omission or<br>mistake.)                              |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|
| 4(b)      | Since light travels from water to air,<br>Refractive index of water <i>n</i> is given by $\frac{1}{n} = \frac{sinsin i}{sinsin r}$<br>( <i>i</i> = angle of incidence in water, <i>r</i> = angle of refraction in air)<br>$\frac{1}{n} = \frac{sinsin i}{sin r}$<br>sin $i = \frac{sin (90^\circ - 40^\circ)}{1.33}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | C1                                                                                                     |
|           | $i = 35^{\circ}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A1                                                                                                     |
| 4(c)      | Light will bend towards the normal when it refracts at the water–oil<br>boundary into the optically denser oil. It will then <b>bend further away</b><br><b>from the normal as it refracts at the oil-air boundary into air</b> compared<br>to the refracted ray emerging from a water-air boundary. This will                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | B1                                                                                                     |
|           | cause the floor to look even shallower than before. Hence the <b>image of</b><br><b>the line will appear above level A</b> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | B1                                                                                                     |
| 5(a)(i)   | Imaginary line on a wave that joins all <b>adjacent</b> points that are in phase.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | B1                                                                                                     |
| 5 (a)(ii) | wave trough<br>wave trough | B1<br>wavefronts<br>drawn<br>correctly<br>joining all<br>crests (or<br>troughs)<br>across the<br>waves |

| 5(b)(i)   | Frequency of the wave $f = 5$ cycles / 10 s = 0.5 Hz<br>Wavelength of the wave $f = 8.0$ cm = 0.080 m                                                                                                                                                                                                                 | M1                                                                                                                                        |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|
|           | Speed of the wave $v = f/2$<br>= (0.5)(0.080)<br>= 0.04 m/s                                                                                                                                                                                                                                                           | A1                                                                                                                                        |
| 5(b)(ii)  | Displacement / cm<br>2.0<br>-2.0<br>-2.0                                                                                                                                                                                                                                                                              | B2<br>(drawn 2<br>wavelengths,<br>labelling the<br>amplitude<br>and<br>wavelength.<br>deduct 1<br>mark for any<br>mistake or<br>omission) |
| 6(a) (i)  | The <b>lighter part of the image</b> on the paper <b>reflects more light onto the</b><br><b>drum</b> and form a conducting area on the drum which <b>cause the</b><br><b>positive charges to be discharged</b> .                                                                                                      | B1<br>B1                                                                                                                                  |
| 6(a)(ii)  | The <b>darker areas of the image reflect less light</b> . The <b>corresponding</b><br><b>regions on the drum remain insulating</b> , and the positive charges<br>remain on the surface of the drum.                                                                                                                   | B1<br>B1                                                                                                                                  |
| 6(a)(iii) | As <b>opposite charges attracts</b> , the <b>toner powder is negatively charged</b><br>and the <b>paper is positively charged</b> .                                                                                                                                                                                   | B1                                                                                                                                        |
| 6(b)(i)   | As the paint leaves the nozzle of the spray gun, the paint droplets become <b>charged by friction</b> .                                                                                                                                                                                                               | B1                                                                                                                                        |
| 6(b)(ii)  | As <b>like charges repel</b> , the charged paint droplets will repel one another and spread out.                                                                                                                                                                                                                      | B1                                                                                                                                        |
| 6b(iii)   | As the charged droplet spread out, it will form a <b>uniform coat of</b><br><b>paint on the car body</b> .<br>Or<br>As the <b>paint droplets are charged</b> , it will <b>reach the car body which is</b><br><b>earthed</b> (instead of falling on the floor) and in this way there will be<br>less wastage of paint. | B1                                                                                                                                        |

| 7(a)             | (Resistance is the ratio of the p.d. across the LED to the current flow through it.) From <b>0 V to 2.7 V</b> , the current of the LED is zero, hence <b>its resistance is infinitely high</b> . From <b>2.7 V to 3.6 V</b> , the current flow the set of the LED is zero. | B1                                 |
|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|
|                  | indicates that its resistance falls from an infinitely high value to zero.                                                                                                                                                                                                 | B1                                 |
| 7(b)(i)          | The <i>I-V</i> graph for the filament lamp <b>is not a straight line</b> passing through the origin.                                                                                                                                                                       | B1                                 |
| 7(b)(ii)         | The <b>resistance of the filament lamp changes (/does not remain constant)</b> due to the rise in temperature of the filament as current flows through it.                                                                                                                 | B1                                 |
| 7(c)             | For the lamp, at $V = 3.0$ V, $I = 37$ mA                                                                                                                                                                                                                                  |                                    |
|                  | $4 \text{ resistance} = \frac{3.0 \text{ V}}{37 \times 10^{-3} \text{ A}}$                                                                                                                                                                                                 | M1                                 |
|                  | = 81 Ω                                                                                                                                                                                                                                                                     | A1                                 |
| 7(d)             | In a series circuit, the same current (37 mA) flows through the LED and the resistor.                                                                                                                                                                                      |                                    |
|                  | From the <i>I</i> - <i>V</i> graph for the LED, $I = 37$ mA, p.d. across LED, $V_D = 3.4$ V                                                                                                                                                                                | C1                                 |
|                  | Using $V = IR$ , p.d. across R, $V_R = (37 \times 10^{-3})(200) = 7.4 \text{ V}$                                                                                                                                                                                           | C1                                 |
|                  | Hence e.m.f., $E = (p.d. cross lamp) + V_D + V_R$                                                                                                                                                                                                                          |                                    |
|                  | = 3.0 V + 3.4 V + 7.4 V                                                                                                                                                                                                                                                    | Δ 1                                |
|                  | - 13.0 V                                                                                                                                                                                                                                                                   | AI                                 |
| 8(a)(i),<br>(ii) |                                                                                                                                                                                                                                                                            |                                    |
|                  |                                                                                                                                                                                                                                                                            | B1<br>(C)                          |
|                  |                                                                                                                                                                                                                                                                            |                                    |
|                  |                                                                                                                                                                                                                                                                            | B1<br>(F)                          |
|                  |                                                                                                                                                                                                                                                                            | (1)                                |
| 8(a)(iii)        | Using Fleming's Left-Hand rule, the fore finger which indicates                                                                                                                                                                                                            | DO                                 |
|                  | conventional current (flow of positive charges), points                                                                                                                                                                                                                    | BZ<br>(deduct 1                    |
|                  | perpendicularly out of the plane of the paper and the thumb which                                                                                                                                                                                                          | mark for any                       |
|                  | indicates the force, points down.                                                                                                                                                                                                                                          | missing                            |
|                  |                                                                                                                                                                                                                                                                            | ponitj                             |
| 8(b)(i)          | Clockwise rotation of the coil means that a pair of forces acts on the side                                                                                                                                                                                                | B1                                 |
|                  | AB and CD of the coil. Consider the side AB of the coil, the <b>magnetic</b><br>force acts unwards and the current flow from A towards B Using                                                                                                                             | (explain using<br>FLH rule on side |
| 1                | i or ce acto apriar ao ana ana che current nom nom A towardo D. Osing                                                                                                                                                                                                      |                                    |

|          | <b>Fleming's Left-Hand rule</b> , with the thumb pointing in the direction of the force (up) and the middle finger pointing in the direction of the current flow (A to B); the fore finger which indicates <b>the direction of the magnetic field is found to point towards the magnetic pole P</b> . Hence magnetic pole <b>P</b> is <b>the South pole</b> and magnetic pole <b>Q</b> is <b>the North pole</b> . | AB or CD of<br>coil)<br>A1 |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| 8(b)(ii) | As the <b>coil rotates past the vertical position by half a turn</b> , the <b>current through side AB of the coil reverses direction</b> (flow from B to A) as its split-ring commutator now makes contact with brush Y. By Fleming's Left-Hand rule, <b>the magnetic force on side AB acts down</b> and continue to rotate the coil in the clockwise direction.                                                  | B1<br>B1                   |

## Paper 2 Section B (30 marks)

| lf | both c | questions | in 11 | are attem | pted, only | y the first o | question is | s marked |
|----|--------|-----------|-------|-----------|------------|---------------|-------------|----------|
|    |        |           |       |           |            |               |             |          |



|                 | water molecules <b>and the internal potential energy</b> due to the separation (or intermolecular bonds) between the water molecules.                                                                    |          |
|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
|                 | Or Internal energy of water is the sum of the internal kinetic energy and the internal potential energy of the water.                                                                                    |          |
|                 | Or Internal energy of water is the sum of the kinetic energy and the potential energy of all the water molecules.                                                                                        |          |
| 9(a)(iii)<br>2. | The internal kinetic energy of the water molecules at 80°C is higher than the internal kinetic energy of the water molecules at 30 °C while the                                                          | B1       |
|                 | internal potential energy of the water molecules are the same at the two<br>temperatures because the separation between the molecules remains the<br>same (in the liquid state) at the two temperatures. | B1       |
| 9(b)(i)         | <b>Evaporation of water</b> through leaves (transpiration) creates a low water vapour pressure in the bore                                                                                               | B1       |
| 9(b)(ii)        | $\Delta p = hg\rho$ $P_{x} = P_{x} = hg\rho$                                                                                                                                                             | M1       |
|                 | $(101 - 7.8) \times 10^3 = h (10)(1000)$<br>h = 9.32 m                                                                                                                                                   | A1       |
|                 |                                                                                                                                                                                                          |          |
| 9(c)            | Evaporation rate will be higher; pressure difference will be greater<br>Hence height increases                                                                                                           | M1<br>A1 |
|                 | OR<br>Water density will be lower [M1]                                                                                                                                                                   |          |
|                 | Hence height increases [A1]                                                                                                                                                                              |          |
| 10(a)           | The speed of the ball <b>decreases at a decreasing rate (or decreases non-uniformly</b> with time).                                                                                                      | B1       |

| 10(b)(i)           |                                                                                                                                                                                                                                                                                                                                                                            |                         |                          |                                              |                                                                         |                               |                  |
|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|--------------------------|----------------------------------------------|-------------------------------------------------------------------------|-------------------------------|------------------|
|                    |                                                                                                                                                                                                                                                                                                                                                                            |                         | weight of<br>the ball    | )<br>air resistance                          | Each force must<br>be labelled and<br>drawn in the<br>correct direction |                               | B1<br>B1         |
| 10(b)(ii)          | The gradient of the speed time graph gives the deceleration of the ball.<br>The magnitude of the deceleration of the ball decreases with the<br>decrease in the speed of the ball. This is due to the decrease in<br>the net force on the ball which is due to the weight of the ball and the<br>air resistance. Since the weight of the ball is constant, the decrease in |                         |                          |                                              |                                                                         | M1                            |                  |
|                    | air<br>bal                                                                                                                                                                                                                                                                                                                                                                 | resistance              | e decreases v            | vith the decrease in an                      | the speed of                                                            | the                           | A1               |
| 10(c)(i)           |                                                                                                                                                                                                                                                                                                                                                                            | [                       |                          |                                              | [                                                                       | 1                             |                  |
|                    |                                                                                                                                                                                                                                                                                                                                                                            | time / s                | speed / ms <sup>-1</sup> | magnitude of acceleration / ms <sup>-2</sup> | direction of acceleration                                               |                               | A2               |
|                    |                                                                                                                                                                                                                                                                                                                                                                            | 1.0                     | 8.0                      | 13                                           | down                                                                    |                               | [≥2 correct      |
|                    |                                                                                                                                                                                                                                                                                                                                                                            | 1.75                    | 0                        | 10                                           | down                                                                    |                               | items 1<br>mark] |
|                    |                                                                                                                                                                                                                                                                                                                                                                            |                         |                          |                                              |                                                                         | -                             |                  |
| 10(c)(ii)          | Usin                                                                                                                                                                                                                                                                                                                                                                       | ng F = ma               |                          |                                              |                                                                         |                               |                  |
|                    | weight of the ball + air resistance = ma<br>(600 x 10 <sup>-3</sup> )(10) + air resistance = (600 x 10 <sup>-3</sup> ) (13)<br>air resistance = 1.8 N                                                                                                                                                                                                                      |                         |                          |                                              |                                                                         | C1<br>A1                      |                  |
| 10(d)              | For the same distance travelled, the <b>average speed downwards is</b><br><b>smaller than the average speed upwards</b> (since air resistance acts<br>throughout the entire up and down motion),<br>hence the <b>time taken to return to ground</b> from the maximum height<br><b>is longer</b> than 1.75 s.                                                               |                         |                          |                                              |                                                                         | B1<br>(answer with<br>reason) |                  |
| EITHER<br>11(a)(i) | Radi<br>wave                                                                                                                                                                                                                                                                                                                                                               | o waves an<br>elengths. | re able to go a          | around obstructions of                       | lue to their lo                                                         | nger                          | B1               |

| EITHER<br>11(a)(ii)            | Microwaves                                                                                                                                                                                                                                                                                        | B1                                                                                                                         |
|--------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|
| EITHER<br>11(a)(iii)           | Advantage: <b>Microwaves is able to penetrate clouds and haze</b> (unlike light which will be reflected).<br>Disadvantage: <b>Microwaves are highly directional</b> and <b>would be blocked by any obstruction</b> that lies between the transmitting satellite and the receiving satellite dish. | B1<br>B1                                                                                                                   |
| EITHER<br>11(b)(i)<br>1.<br>2. | A $P_4$ $P_5$ $P_6$ $P_7$ $P_8$ $P_9$ $P_{10}$                                                                                                                                                                                                                                                    | B2<br>[subtract<br>1 mark for any<br>wrong<br>displacement ]<br>B1<br>[amplitude<br>shown for<br>particle P <sub>9</sub> ] |
| EITHER<br>11(b)(ii)            | The air <b>molecules vibrate</b> in the <b>direction parallel</b> to the <b>direction in which the wave travels</b> .                                                                                                                                                                             | A1                                                                                                                         |
| EITHER<br>11(b)(iii)           | Wavelength $\lambda$<br>= distance between particles 0 and 12 (in Fig. 11.2)<br>= <b>12 cm</b> or<br>= <b>0.12 m</b><br>Frequency = $v/\lambda$ = 330/0.12 = <b>2750 Hz</b>                                                                                                                       | A1<br>A1                                                                                                                   |
| OR<br>11(a)(i)                 | As <b>rod AB cuts across the magnetic field</b> , there is <b>a change of</b><br><b>magnetic flux linking the circuit</b> and this produces an induced e.m.f.                                                                                                                                     | B1<br>B1                                                                                                                   |
| 11(a)(ii)<br>1                 | B<br>O<br>O<br>O<br>O<br>O<br>O<br>O<br>O<br>O<br>O<br>O<br>O<br>O                                                                                                                                                                                                                                | B1<br>(Direction)                                                                                                          |

| 11(a)(ii)      | From Lenz's law, the <b>induced current will flow in a direction to</b>                                                                                                                                                                                                                                                          | B1                                                |
|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|
| 2              | oppose the motion producing it.<br>Applying Fleming's left-hand rule, with the magnetic force exerted<br>on rod AB towards the left and the magnetic field directed<br>upwards, the induced current will flow from B towards A.                                                                                                  | B1                                                |
|                | Alternative answer:                                                                                                                                                                                                                                                                                                              | D1                                                |
|                | <b>Applying Fleming's right-hand rule on</b> <u>rod AB</u> , the <b>thumb which</b><br><b>indicates the motion of rod AB points to the right and the fore</b><br><b>finger indicating magnetic field points upwards, the middle finger</b><br><b>which indicates the induced current</b> points towards the end A of the<br>rod. | (RH rule on<br>rod)<br>B1<br>(describe<br>method) |
| OR<br>11(b)(i) | primary coil = <b>M</b> (1 500 turns)<br>secondary coil = <b>K</b> (100 turns)                                                                                                                                                                                                                                                   | A1                                                |
|                | Step down ratio of voltages required<br>(coil M : coil K) $V_P / V_S = 3300 : 220 = 15 : 1$<br>Hence step-down ratio of turns (M:K) required<br>$N_P / N_S = 1500 : 100 = 15 : 1$<br>Both ratio are the same or $V_P / V_S = N_P / N_S$                                                                                          | M1<br>(working/<br>explanation)                   |
| OR             | power output75                                                                                                                                                                                                                                                                                                                   |                                                   |
| 11(b)(ii)      | power input - 100                                                                                                                                                                                                                                                                                                                |                                                   |
|                | Power input = $\frac{100}{75} \times 15  kW$                                                                                                                                                                                                                                                                                     | C1                                                |
|                | = 20 kW                                                                                                                                                                                                                                                                                                                          |                                                   |
|                | Current flow through the primary coil, $I = \frac{P}{V}_{20\ 000}$                                                                                                                                                                                                                                                               |                                                   |
|                | $=\frac{3300}{3300}$<br>= 6.1 A                                                                                                                                                                                                                                                                                                  | A1                                                |
| 11(b)(iii)     | Use <b>thick coils</b> to reduce the resistance in both primary and secondary coils.                                                                                                                                                                                                                                             | B1                                                |
|                | Or <u>Laminate the soft iron core</u> to reduce energy lost as heat in the iron core.                                                                                                                                                                                                                                            |                                                   |
|                | Both steps above will <u>reduce power lost as heat</u> generated in the coils or the soft iron core.                                                                                                                                                                                                                             |                                                   |