Revision Notes

Learning Objectives

- ✓ Apply the rules of differentiation to differentiate algebraic expressions
- ✓ Find the derivative of f(x) as the gradient of the tangent to a curve y = f(x) at a particular point
- ✓ Find higher derivatives of functions
- ✓ Apply standard derivative notations such as $\frac{dy}{dx}$, $\frac{d^2y}{dx^2} \left[= \frac{d}{dx} \left(\frac{dy}{dx} \right) \right]$, $f'(x) \left[= \frac{d}{dx} f(x) \right]$, $f''(x) \left[= \frac{d}{dx} f'(x) \right]$
- \checkmark Apply $\frac{dy}{dx}$ to increasing and decreasing functions
- 1. Gradient of a curve

For the curve y = f(x), $\frac{dy}{dx}$ represents the gradient of the tangent to the curve at a point P. $\frac{dy}{dx}$ measures the **rate** of change of y with respect to x.

2. Formulae

(a)
$$\frac{\mathrm{d}}{\mathrm{d}x}(x^n) = nx^{n-1}$$

(b)
$$\frac{\mathrm{d}}{\mathrm{d}x}(ax^n) = anx^{n-1}$$

(c) In general,
$$\frac{\mathrm{d}}{\mathrm{d}x} [f(x)]^n = n[f(x)]^{n-1} f'(x)$$

(d)
$$\frac{\mathrm{d}}{\mathrm{d}x}(k) = 0$$

3. Derivative rules:

(a) Addition/Subtraction Rule:
$$\frac{d}{dx}[f(x) \pm g(x)] = \frac{d}{dx}[f(x)] \pm \frac{d}{dx}[g(x)]$$

(b) Chain Rule:
$$\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}$$

(c) Product Rule:
$$\frac{d}{dx}(uv) = u\frac{dv}{dx} + v\frac{du}{dx}$$

(d) Quotient Rule:
$$\frac{d}{dx} \left(\frac{u}{v} \right) = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2}$$

4.

If y is an increasing function (y increases as x increases), the gradient is positive: $\frac{dy}{dx} > 0$.

If y is an decreasing function (y decreases as x increases), the gradient is negative: $\frac{dy}{dx} < 0$.

5. Higher Derivatives

Function in x	y	f(x)
First derivative	$\frac{\mathrm{d}y}{\mathrm{d}x}$	f'(x)
Second derivative	$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2}$	f"(x)
Third derivative	$\frac{\mathrm{d}^3 y}{\mathrm{d}x^3}$	f'''(x)

Applications of Differentiation

Learning Objectives

- Find the equations of the tangents and the normal to a curve at a particular point
- Apply differentiation to problems on rate of change
- Find the nature of a stationary point on a curve and determine whether it is a maximum point, a minimum point or a stationary point of inflexion
- Apply differentiation to solve problems involving maximum and minimum values

1.

y = f(x) If y = f(x) and $\frac{dy}{dx}$ gives the gradient, m, of the tangent,

• Gradient of the normal $= -\frac{1}{m}$

- the equation of the tangent at the point (x_1, y_1) , i.e. l_1 , is $y y_1 = m(x x_1)$,
 the equation of the normal at the point (x_1, y_1) , i.e. l_2 , is $y y_1 = -\frac{1}{m}(x x_1)$.
- If the variables x and y both vary with another variable, say t(time), then the rates of change of x and y with respect to t, i.e. $\frac{dy}{dt}$ and $\frac{dx}{dt}$ are related by $\frac{dy}{dt} = \frac{dy}{dx} \times \frac{dx}{dt}$. 2.
- If a point (x_0, y_0) is a stationary point of the curve y = f(x), then $\frac{dy}{dx} = 0$ when $x = x_0$, i.e. the 3. gradient of the tangent at $x = x_0$ is 0.
- First derivative test: to test for nature of stationary point 4.

Substitute values of x^- , x_0 , x^+ into $\frac{dy}{dx}$.

- **Maximum point:** value of $\frac{dy}{dx}$ changes from positive to negative before and after the (a) stationary point
- **Minimum point:** value of $\frac{dy}{dx}$ changes from negative to positive before and after the (b) stationary point
- **Point of inflexion:** sign of $\frac{dy}{dx}$ does not change before and after the stationary point (c)

5. Second derivative test: used to discriminate between maxima and minima

(a)
$$\frac{d^2y}{dx^2} < 0$$
: Maximum point

(b)
$$\frac{d^2y}{dx^2} > 0$$
: Minimum point

(c)
$$\frac{d^2y}{dx^2} = 0$$
: Maximum point, minimum point or point of inflexion.

Second derivative test cannot determine point of inflexion.

- 6. To solve a problem on maximum or minimum values:
 - Step 1: Find a relationship between the quantity to be maximised or minimised and the variable(s) involved.
 - Step 2: If there is more than one variable involved, use substitution to reduce it to one independent variable only.

Step 3: Find
$$\frac{dy}{dx}$$
 of the expression obtained above.

Step 4: Equate
$$\frac{dy}{dx}$$
 to 0 to obtain the value(s) of the variable.

- Step 5: Check the nature of the stationary point (first derivative test)
- Step 6: Find the required maximum or minimum value of the quantity.

Differentiation (Trigonometric, Logarithmic & Exponential)

Learning Objectives

- ✓ Differentiate trigonometric functions
- ✓ Differentiate logarithmic functions
- ✓ Differentiate exponential functions
- ✓ Solve problems in the applications of differentiation involving trigonometric, logarithmic and exponential functions

1. Derivatives of Trigonometric Functions

$\frac{\mathrm{d}}{\mathrm{d}x}(\sin x) = \cos x$	$\frac{\mathrm{d}}{\mathrm{d}x}(\sin^n x) = n\sin^{n-1}x\cos x$
$\frac{\mathrm{d}}{\mathrm{d}x}(\cos x) = -\sin x$	$\frac{\mathrm{d}}{\mathrm{d}x}(\cos^n x) = -n\cos^{n-1}x\sin x$
$\frac{\mathrm{d}}{\mathrm{d}x}(\tan x) = \sec^2 x$	$\frac{\mathrm{d}}{\mathrm{d}x}(\tan^n x) = n\tan^{n-1} x \sec^2 x$
$\frac{\mathrm{d}}{\mathrm{d}x}(\sec x) = \sec x \tan x$	$\frac{\mathrm{d}}{\mathrm{d}x} \Big[\sin^n(ax+b) \Big] = an\sin^{n-1}(ax+b)\cos(ax+b)$
$\frac{d}{dx}(\csc x) = -\csc x \cot x$	$\frac{\mathrm{d}}{\mathrm{d}x} \Big[\cos^n(ax+b) \Big] = -an\cos^{n-1}(ax+b)\sin(ax+b)$
$\frac{\mathrm{d}}{\mathrm{d}x}(\cot x) = -\csc^2 x$	$\frac{\mathrm{d}}{\mathrm{d}x} \left[\tan^n(ax+b) \right] = an \tan^{n-1}(ax+b) \sec^2(ax+b)$
$\frac{\mathrm{d}}{\mathrm{d}x}[\sin(ax+b)] = a\cos(ax+b)$	$\frac{\mathrm{d}}{\mathrm{d}x} \left[\sin^n f(x) \right] = n \sin^{n-1} f(x) \times \frac{\mathrm{d}}{\mathrm{d}x} \left[\sin f(x) \right]$
$\frac{\mathrm{d}}{\mathrm{d}x}[\cos(ax+b)] = -a\sin(ax+b)$	$\frac{\mathrm{d}}{\mathrm{d}x} \left[\cos^n f(x) \right] = n \cos^{n-1} f(x) \times \frac{\mathrm{d}}{\mathrm{d}x} \left[\cos f(x) \right]$
$\frac{\mathrm{d}}{\mathrm{d}x}[\tan(ax+b)] = a\sec^2(ax+b)$	$\frac{\mathrm{d}}{\mathrm{d}x} \left[\tan^n f(x) \right] = n \tan^{n-1} f(x) \times \frac{\mathrm{d}}{\mathrm{d}x} \left[\tan f(x) \right]$

2. Derivatives of Logarithmic Functions

$$\frac{d}{dx}(\ln x) = \frac{1}{x}$$

$$\frac{d}{dx}[\ln(ax+b)] = \frac{a}{ax+b}$$

$$\frac{d}{dx}[\ln f(x)] = \frac{f'(x)}{f(x)}, \text{ where } f'(x) = \frac{d}{dx}[f(x)]$$

As far as possible, make use of the laws of logarithms to simplify logarithmic expressions before finding the derivatives.

3. Derivatives of Exponential Functions

$$\frac{d}{dx} [e^x] = e^x$$

$$\frac{d}{dx} [e^{ax+b}] = ae^{ax+b}$$

$$\frac{d}{dx} [e^{f(x)}] = f'(x) e^{f(x)}, \text{ where } f'(x) = \frac{d}{dx} [f(x)]$$

Kinematics

Learning Objectives

- ✓ Apply differentiation and integration to problems involving displacement, velocity and acceleration of a particle moving in a straight line
- 1. Relationship between displacement(s), velocity(v) and acceleration(a):

- 2. Common terms used in Kinematics:
 - (a) Initial: t = 0
 - (b) At rest/Stationary: v = 0
 - (c) Particle is at the fixed point: s = 0
 - (d) Maximum/minimum displacement: v = 0
 - (e) Maximum/minimum velocity: a = 0
- 3. Average speed = $\frac{\text{total distance travelled}}{\text{total time taken}}$
- 4. To find the distance travelled in the first *n* seconds:
 - Step 1: Let v = 0 to find the value(s) of t.
 - Step 2: Find *s* for each of the values of *t* found in Step 1.
 - Step 3: Find s for t = 0 and for t = n.
 - Step 4: Draw the path of the particle on a displacement-time graph.