2015 Promotional Examination II Pre-university 2

H1 CHEMISTRY

Paper 2 Structured Questions

Candidates answer Section A on the Question Paper

Additional Materials: Cover page Data Booklet Writing paper

READ THESE INSTRUCTIONS FIRST

Write your name, index number and class on all the work you hand in. Write in dark blue or black pen on both sides of the writing paper. You may use a soft pencil for any diagrams, graphs or rough working. Do not use staples, paper clips, highlighters, glue or correction fluids. The use of an approved scientific calculator is expected, where appropriate.

Section A

Answer all the questions.

Section B

Answer two questions on the separate writing papers. Start each new question on a fresh sheet of writing paper.

At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [] at the end of each question or part question.

FOR EXAMINER'S USI	Ξ
--------------------	---

		Secti	on A			Section B		Total
Question No.	1	2	3	4	5	6	7	
Question No	(12m)	(11m)	(7m)	(10m)	(20m)	(20m)	(20m)	
Marks								80
Obtained								

8872 / 02

16 Sept 2015 2 hours

Section A (40 marks)

Answer **ALL** questions in this section in the spaces provided.

1	Phosphorus is an essential part of life for both human beings and plants. Phosphorus								
	compounds can be found in the minerals in bones and teeth. Phosphorus is also a vital								
	element for plants which is present in the form of phosphates in the fertiliser to								
	maximise the growth of the plant								
	(a)	Phos	phoric acid reacts with potassium hydroxide as shown in the	e following reacti	on.				
			$H_3PO_4(aq) + 3KOH(aq) \rightarrow K_3PO_4(aq) + 3H_2O(aq)$	<i>l</i>)					
		Som	e thermochemical data are shown below.						
				ΔH ^θ / kJ mol⁻¹					
			Standard enthalpy change of formation of $H_3PO_4(aq)$	-1277					
			Standard enthalpy change of formation of KOH(aq)	-482					
		_	Standard enthalpy change of formation of K ₃ PO ₄ (aq)	-1950					
			Standard enthalpy change of formation of H ₂ O(<i>l</i>)	-286					
		(i)	Define standard enthalpy change of formation of H_3PO_4 (as	q).	[1]				
			The standard enthalpy change of formation of aqueous H_3	PO₄ is the <mark>entha</mark>	alpy				
			change when one mole of aqueous H₃PO₄ is formed fr	<u>om its constitu</u>	<u>lent</u>				
			elements in their standard states (H ₂ , P ₄ and O	₂ <u>)</u> under <mark>stanc</mark>	lard				
			conditions.						
		<i>/</i> ···>							
		(11)	Calculate the standard enthalpy change for the reaction	between phosph	noric				
			acid and potassium hydroxide based on the information pro	ovided.	[2]				
			$\Delta H_{rxn}^{\theta} = -1950 + (-286 \times 3) - [(-1277) + (-482 \times 3)];$						
			= -85.0 kJ mol ⁻¹ ;						
	(b)	Phos	phorus can react with chlorine to form phosphorus	pentachloride	and				
	phosphorus trichloride.								
	(i) The bailing points of pheepherus and pheering are 200 °C and 24 °C								
	(i) The boiling points of phosphorus and chlorine are 280 °C and -34 °C								
	respectively.								
			Explain, in terms of structure and bonding, the differen	ce in boiling po	oints				
			observed in phosphorus and chlorine.		[2]				
			Both phosphorus and chlorine have simple molecular stru	ictures and are	held				

		by <u>temporary dipole-induced dipole forces of attraction between molecules</u> .; <u>More</u> energy is required to overcome the <u>stronger</u> <u>temporary dipole-induced</u> <u>dipole forces of attraction between P₄ molecules</u> due to the <u>larger electron</u> <u>cloud size of P₄ compared to Cl₂.</u> ;	For Examiner's Use
	(ii)	Draw a molecule of phosphorus pentachloride, PCl_5 , showing clearly its shape. Indicate the bond angles on the molecule. [1]	

(C)	Radi	pactivity, or radioactive decay, follows first-order kinetics and it involves the	For						
	emis	sion of a particle or a photon that results from the spontaneous decomposition	Examiner's						
	of the	a unstable nucleus of an atom. An example of radioactive isotope of phosphorus	Use						
	is ³² F	which is used as biochemical tracer in the identification of malignant tumours.							
	³² P h	as a half-life of 14 days.							
	(i)	(i) Define the term <i>half-life</i> of a reaction. [1]							
		Half-life is the time taken for the concentration of reactant to fall to half of its							
		initial concentration.							
	(11)	If the initial mass of "P present was 0.0168g, calculate the mass of "P at the							
		end of 42 days. [2]							
		No of half-lives= $42/14 = 3$;							
		Mass of ${}^{32}P$ at the end of 42 days = 0.0168 / (2 ³) = 0.00210g ;							
		[Total:12]							

2	(a)	Bauxite is an aluminium ore containing aluminium oxide and other impurities such as							
		silica	, iron oxides and tit	tanium dioxide. The	Bayer process is	an important indu	strial		
		process to obtain pure aluminium oxide from bauxite.							
		1							
		In th	e Baver process	bauvita is first ra	acted with hot s	odium hydroxide	Thie		
			e bayer process,				11115		
		conv	erts the aluminium		to a soluble salt, a	s, and water. The	solia		
		impu	rities are then filtere	ed off.					
		The	second step in th	e process involves	s bubbling carbor	n dioxide gas into	the		
		prod	ucts of the earlier s	tep, producing alur	minium hydroxide	precipitate and so	dium		
		carbo	onate.						
		In the	e third step, the pre	cipitate obtained is	heated to its deco	mposition tempera	ture,		
		prod	ucina pure aluminiu	m oxide and water	vapour		,		
		prou							
		(i)		has the following	composition by m	2001			
		(1)			composition by ma	255.			
			INA, 20.0%, Al, 33.	.0%, 0, 39.0%.	• • • • • • •				
			Determine the mo	blecular formula of	S given that it ha	s a molecular ma	ss of		
			82.0.				[3]		
				Na	Al	0			
			%	28.0	33.0	39.0			
			amount	1.217	1.222	2.438			
			ratio	1	1	2		For	
		$(NaA/O_2)_n = (23.0 + 27.0 + 32.0)n = 82.0$							
		n = 1 ;							
		molecular formula = NaA/O_2 ;							
			working in table ;						
			.						

(ii)	Hence using your answer in (a)(i), write balanced equations for the first two	
	steps of the process. [2]	
	$Al_2O_3 + 2NaOH \rightarrow 2NaAlO_2 + H_2O$;	
	$2NaAlO_2 + CO_2 + 3H_2O \rightarrow 2Al(OH)_3 + Na_2CO_3$;	
(iii)	During an industrial production of aluminium oxide via the Bayer process, a	
	1 tonne sample of bauxite was used. The aluminium oxide produced reacted	
	completely with 4060 dm ³ solution of 5 mol dm ⁻³ of hydrochloric acid.	
	$Al_2O_3 + 6HCl \rightarrow 2AlCl_3 + 3H_2O$	
	Calculate the percentage by mass of aluminium oxide in the sample.	
	[1 tonne = 1000 kg] [2]	
	amount of $Al_2O_3 = (5 \times 4060)/6 = 3383.3 \text{ mol}$;	
	mass of $Al_2O_3 = 3383.3 \times [(27.0)(2) + (16.0)(3)] = 345100 \text{ g}$	
	percentage by mass = $\frac{345100}{1000000} \times 100\% = 34.51\% \approx 34.5\%$;	

 (b)	Like	e aluminium ox	kide, mineral ac	ids are use	ed as catalys	ts in many r	eactions.		
	In c	one such reac	tion, sulfuric ad	cid was us	ed to catalys	e the react	ion of propan	one	
	with	n iodine.							
			CH₃COCH	$H_3 + I_2 \rightarrow$	CH ₂ ICOCH ₃	3 + HI			
	The	e kinetics of	the reaction c	an be inv	estigated ex	perimentally	y by varying	the	
	con	centrations of	propanone, io	dine and s	sulfuric acid a	and determ	ining the time	for	
	the	colour of the i	odine to disapp	ear. In this	s method, the	rate of rea	ction is measu	ired	
	in te	erms of the rat	e at which the	iodine conc	centration cha	anges,			
			i.e. rate of rea	ction $\propto \frac{v_0}{time}$	olume of aqueous	iodine used			
	The	e followina resi	ults were obtair	ned.					
		, reneting ree		loar					
	Γ	Experiment	Volume of	Volume	volume	volume	relative	7	
		no.	propanone	of	of	of water	time for		
			/cm°	lodine /cm ³	sulfuric acid /cm ³	/cm ³	colour of iodine to disappear		
	-	1	16	8	16	0	1		
	-	2	8	8	16	8	2		
	-	3	16	8	8	8	2		
	-	4	16	4	16	4	t	_	
	(i)	Deduce the	order with res	pect to pro	panone and h	nydrogen io	ns.	[2]	For Examiner's Use
		Comparing	experiment 1 &	& 2, the tim	e doubles wi	nen (rate is	halved) when	the	
		volume of p	propanone used	d is halved.					
		First order	w.r.t. propanon	e;					
		Comparing	experiment 1 &	& 3, the tim	e doubles wi	nen (rate is	halved) when	the	
		volume of s	sulfuric acid use	ed is halved	J.				
		First order	w.r.t. hydrogen	ions;					

(ii)	Given that the order of reaction with respect to iodine is zero, determine the	
	relative time, <i>t</i> , for colour of iodine to disappear for experiment 4 . [2]	
	rate = k [propanone][H^+][I_2] ⁰	
	Comparing expts 1 & 4, since [propanone] and $[H^+]$ are constant, rate is	
	constant.	
	Relative rate for experiment $4 =$ relative rate for expt $1 = 8/1 = 8$;	
	t = 4/8 = 0.5;	
	[Total: 11]	

3	Tart	taric acid can be made from ethene via the synthetic route shown below.	
		$CH_2=CH_2 \xrightarrow{I} CH_2(OH)CH_2OH \xrightarrow{II} O=C-C=O$	
		TII T	
		$\begin{array}{cccc} & CO_2H & CO_2H & IV & CN & CN \\ HO-C & & C-OH & \hline HO-C & C-OH \\ H & H & H & H \end{array}$	
		tartaric acid	
	(a)	State the reagents and conditions for each of the following conversions,	
		steps I to IV. [4]	
		Step I: cold, dilute, KMnO ₄ / NaOH (aq);	
		Step II: $K_2Cr_2O_7$, dilute H_2SO_4 , heat and distill ;	
		Step III: HCN, trace amount of NaOH, followed by H ₂ SO ₄ , 10-20°C ;	
		Step IV: dilute HC <i>l</i> , heat ;	

4	3-flu exhi	ioropropenoic acid, CHF=CHCO ₂ H, is used as building blocks of polymers and it bits geometric isomerism.	
	(a)	Draw and label clearly, the geometric isomers of 3-fluoropropenoic acid. [2]	
		$\begin{array}{c c} F & CO_2H & F & H \\ C=C & H & C=C \\ H & H & H & CO_2H \end{array}$ Cis trans	
	(b)	Suggest how the acidity of CHF=CHCO ₂ H might compare to that of CHC/=CHCO ₂ H. [2]	
-		CHF=CHCO ₂ H is more acidic than CHC I =CHCO ₂ H.	
		F is more electronegative than CI, thus there is a greater inductive effect where F	
		disperses the negative charge on the carboxylate anion to a greater extent, ;	
		in turn reducing the intensity of the negative charge on the O atom. The carboxylate	
		anion is more stable and donates a proton more readily. Thus acid strength increases. :	
┣──			
	(c)	Explain why CHF=CHCO ₂ H is soluble in NaOH(aq). [2]	For Examiner's Use
		$CHF=CHCO_2H$ reacts with NaOH to form $CHF=CHCO_2^-$;	
		The ion-dipole interaction between the CHF=CHCO2 ⁻ and water releases sufficient	
		energy to overcome the hydrogen bonding between water molecules.;	

(d)	0.422 g of an organic compound, $C_3H_xI_y$ (M_r = 422) is subjected to alkaline							
	hydrolysis. After cooling the products, excess dilute HNO ₃ (aq) is added followed by							
	the addition of AgNO $_3$ (aq). The mass of the precipitate, AgI formed is 0.705 g.							
	Determine the values of x and y . [4]							
	Amount of organic compound = $\frac{0.422}{422}$ = 1.00 x 10 ⁻³ mol ;							
	Amount of AgI = $\frac{0.705}{235}$ = 3.00 x 10 ⁻³ mol ;							
	Mole ratio of organic compound : Agl (and hence I) = 1 : 3, thus $y = 3$;							
	$\underline{x = 422 - (3x12) - (3x127) = 5};$							
	[Total:10]							

Section B

Answer **two** questions from this section on separate answer paper.

5	(a)	Liquid propane is commonly found in canisters used for portable gas stoves during camping					
		trips. The enthalpy change of combustion of propane is -2202 kJ mol ⁻¹ . A camper found a					
		left	left-over canister of propane and estimates that there was about 60 g of liquid propane.				
		Calculate the mass of water, at an initial temperature of 25 °C, that he can boil before the					
		car	canister becomes empty. [2]				
		Amount of propane= $\frac{60}{12.0 \times 3 + 1.0 \times 8}$ = 1.364 mol					
		Energy evolved during combustion= 1.364 x 2202 = 3003 kJ ;					
		Q=mc∆T					
			3003x10 ³ = m x 4.18 x (100-25)				
			m = 9578g =9.58 kg ;				
	(b)	Uno	der conditions of insufficient oxygen, propane burns to give carbon monoxide, which is a				
		poi	sonous colourless and odourless gas.				
		(i)	Construct a balanced equation for this reaction.				
			$C_3H_8 + 7/2O_2 \rightarrow 3CO + 4H_2O$ [1]				
		(ii)	Define bond energy.				
		Bond energy is the energy absorbed to break one mole of covalent bond between two					
			atoms in the gaseous state. [1]				
		(iii) Given that the bond energy of C≡O is +740 kJ mol ⁻¹ and using the bond energy values					
			from the Data Booklet, calculate the enthalpy change for the reaction in (b)(i).				
			$\Delta H_{rxn} = 2(350) + 8(410) + 7/2(496) - 3(740) - 8(460) ; $ [2]				
			= -184 kJ mol ⁻¹ ;				
	(c)	Exp	lain the following observations, writing balanced equations where appropriate.				
		(i)	Carbon dioxide das is produced on adding sodium carbonate to aluminium chlorido.				
		()	solution, but not on adding sodium carbonate to sodium chloride solution [3]				

	NaCl dissolves in water to give neutral solution .
	$NaCl \rightarrow Na^{+} + Cl^{-}$;
	$AlCl_3$ dissolves in water to give acidic solution due to the highly charged Al^{3+} which
	polarizes H_2O molecules to liberate H^+ ions. ;
	$AlCl_3 + 6H_2O \rightarrow [Al(H_2O)_6]^{3+} + 3Cl$
	$[A_{l}(H_{2}O)_{6}]^{3+} \rightarrow [A_{l}(H_{2}O)_{5}(OH)]^{2+} + H^{+}$
	CO_2 gas produced when Na_2CO_3 added to acidic A/Cl_3 solution.;
	$Na_2CO_3 + 2H^+ \rightarrow 2Na^+ + H_2O + CO_2$
(ii)	On dissolving silicon tetrachloride in water, the resulting solution turned moist blue litmus
	paper red. [2]
	$SiCl_4 + 2H_2O \rightarrow SiO_2 + 4HCl;$
	SiCl ₄ undergoes hydrolysis in water to give acidic solution.
	Availability of vacant d orbitals for formation of dative covalent bonding with H_2O ,
	weakening the O–H bond in H_2O , resulting in the dissociation of H_2O to give H^+ . ;
(iii)	In solid state, copper conducts electricity but copper(II) chloride does not. [2]
	Copper has a giant metallic structure where it is held by strong electrostatic forces of
	attraction between cations and a 'sea' of delocalised electrons. The electrons acts as
	mobile charge carriers ; to conduct electricity in the solid state. In solid state, the
	oppositely charged ions in copper(II) chloride are held in fixed position in the giant ionic
	lattice structure. There is no mobile charge carriers to conduct electricity. <u>:</u>
(iv)	Reddish brown NO ₂ gas dimerises to give N_2O_4 , a colourless gas. The dimerisation
,	process is reversible. A flask containing both gases at equilibrium appeared reddish
	brown at high temperatures while the same flask appeared pale brown when the
	temperature was lowered [3]
	$2NO_{c} \Rightarrow N_{c}O_{c}$
	The dimension process is exothermic \therefore
	When temperature is high by Le Chatelier's Principle, the equilibrium will shift to the left
	to lower the temperature, favouring the endothermic reaction
	Thus more NO is produced therefore the flask appears reddish brown :
	Thus, more NO ₂ is produced, merelore the hask appears reduish brown.

(d)	Organic acids are weak acids whereas inorganic acids are generally strong acids.		
	(i)	Define a weak acid.	
		A weak acid is one that dissociates partially in water to donate H ⁺ ions. [1]]
	(ii)	Calculate the pH of a solution where the hydrogen ion concentration is 0.04 mol dm ⁻³ .	
		pH= -log(0.04) = 1.40 [1]]
	(iii)	Calculate the pH of a solution of potassium hydroxide of concentration 0.05 mol dm ⁻³ .	
		pOH = -log(0.05) = 1.301;	
		pH = 14-1.301 = 12.7 ; [2]]
		[Total: 2	01
			~1

6	(a)	Tin (Sn) exists in two forms. One known as 'white tin', which is a metal and a second form,		
		known as 'grey tin', which has a structure similar to diamond and is more covalent in		
		cha	iracter.	
		0110		
		(i)	State the noble gas configuration of tin.	
		.,		
			[Kr]4d ¹⁰ 5s ² 5p ² [1]	
		(::)	State two physical properties of white tip which shows it to be a motal [2]	
		(11)	State two physical properties of white tin which shows it to be a metal. [2]	
			 Conducts electricity in solid state (due to presence of mobile electrons) 	
			 High melting/boiling points 	
			Malleable and ductile	
			Any two correct properties : :	
		(iii)	Grey tin was boiled under reflux with iodine (I_2) dissolved in tetrachloromethane.	
			Orange crystals of the product, SnI4, were obtained by filtering the hot reaction mixture	
			followed by cooling the filtrate.	
			Draw the 'dot-and-cross' diagram of SnI_4 , stating clearly its shape and bond angle.	
			Totrobadyal 100 5%	
			Tetranedral, 109.5 ,	
			I • × Ŝnו I	
			101	
			[2]	

	(iv)	The following table s	hows the first ion	isation energy of Sn and I.	
			Element	1 st Ionisation Energy/ kJ mol ⁻¹	
			Sn	707	
			Ι	1010	
		Explain why the first	ionisation energy	of I is higher than that of Sn.	
		I and Sn are in the	same period. Th	ere is an increase in effective nucl	<u>ear charge ;</u>
		from Sn to I due to	the increase in n	uclear charge and negligible increase	in screening
		effect across the per	iod. The <u>attractio</u>	on between the valence electron an	<u>d nucleus is</u>
		stronger for I than	that of Sn and <u>t</u>	he distance between the valence of	electron and
		nucleus is shorter	for I than that of	Sn. Hence <u>more energy</u> is required t	o remove the
		valence electron from	n I than Sn. <u>;</u>		
					[2]
					[4]
(b)	Pro	pose a 2-step synthe	sis route to show	v how <u>each</u> of the following conversion	ns can occur.
	Sta	te all reagents and	conditions used	d in each step of the synthesis a	nd draw the
	inte	rmediates clearly.			
	i.	$CH_3CH=CH_2 \rightarrow$	CH ₃ CH(NH ₂)CH ₃		
	ii	$CH_3CH=CH_2 \rightarrow C$	CH ₃ COCH ₃		[6]
	CH	$_{3}CH=CH_{2} \rightarrow CH_{3}$	$(Br)CH_3 ; \rightarrow CH_3$	₃ CH(NH ₂)CH ₃	
	Ste	p II: excess concentra	ted ethanolic NH	$_{3}$, heated in a sealed tube. ;	
	СН	$_{3}CH=CH_{2} \rightarrow CH_{3}CH($	$OH)CH_3 ; \rightarrow CH_3$	3COCH3	
	Ste Ste	p I: H₂O (g), conc H₃P p II: conc KMnO₄ . H₂	'O₄, 300 °C, 60atı SO₄ (aɑ). heat :	m ;	
		F • • • • • • • • • • • • • • • •			

	(c)	Alcohol R, $C_4H_{10}O$, reacts with concentrate	d sulfuric acid to give three compounds S,
		T and U. When compounds S, T and U were	separately reacted with hot acidified potassium
		manganate (VII), the following was observed.	
		• Compounds T and U formed the same	products.
		 Effervescence was observed only for the 	e reaction involving compound S .
		• All 3 compounds S , T and U formed pro	oducts that reacted with sodium carbonate.
		Deduce the structures of R, S, T and U. I	Explain clearly the chemistry involved in the
		reactions.	[7]
		Observations	Deductions
		Alcohol R , $C_4H_{10}O$, reacts with concentrated sulfuric acid to give three compounds	Elimination / dehydration.
			R is a secondary alcohol in order to give 3
			products after elimination. R is butan-2-ol.
		S, T and U were separately reacted with hot	S, T and U are alkenes.
		acidined potassium manganate.	Vigorous oxidation occurred.
		T and U formed the same products	T and U are geometrical isomers
		Effervescence was observed only for the reaction involving compound S .	CO_2 evolved. S is a terminal alkene.
		S, T and U formed products that reacted	S, T and U undergo vigorous oxidation to
		with sodium carbonate.	form carboxylic acids.
			·
		All correct deductions: 3marks	
		2. 1 deductions: 2 marks	
		S-4 deductions. Zmarks	
		<3 deductions: 1 mark	
		R : Butan-2-ol ;	
		S: But-1-ene ;	
		T: Cis but-2-ene ;	
		U : Trans but-2-ene ;	
			[Total:20]
L			

7	Fuels made from oil mixtures containing large hydrocarbon molecules are not efficient. They do not					
	flow easily and are difficult to ignite. Crude oil often contains too many large hydrocarbon molecules					
	and insufficient small hydrocarbon molecules to meet demand. This is where cracking comes in.					
	Cracking is a process that allows large hydrocarbon molecules to be broken down into smaller,					
	more useful hydrocarbon molecules. One possible cracking reaction involves the hydrocarbon,					
	C ₁₅ H	₃₂ .				
	(a)	a) $C_{15}H_{32}$ undergoes cracking to produce ethene, propene and octane (C_8H_{18}) only.				
		(i)	Write a balanced equation to illustrate the	cracking reaction of $C_{15}H_{32}$. [1]	_	
			$C_{15}H_{32} \rightarrow 2C_2H_4 + C_3H_6 + C_8H_{18}$			
		(ii)	Propene can be converted to propane. Sta	ate the reagents and conditions, and the type of		
			reaction for this reaction.	[2]		
			H ₂ (g), Ni catalyst, 150°C		_	
			Type of reaction: addition			
		(iii)	Suggest a simple chemical test to distingu	ish between propene and octane. Your answer	•	
			should include reagents and conditions an	d expected observations. [2]		
			Aqueous Br ₂ , room temperature. ;			
			For propene, orange $Br_2(aq)$ decolourise w	whereas for octane, orange $Br_2(aq)$ remains		
			orange.;			
		(iv)	Draw one structural isomer of octane, C_8H	₁₈ . [1]		
			Accept any chain-branched isomer.			
	(b)	An	alkane B is a component of fuel. When tre	ated with bromine under uv light, it produces a	-	
		mix	ture of brominated compounds, including C	$C_6H_{12}Br_2$. Dehydrobromination of C produces		
	D . C ₆ H ₁₀ . When D is oxidised by hot concentrated KMnO ₄ three compounds CO_2 CH ₂ CO ₂ H					
		and	CH ₃ COCO ₂ H, are formed in equimolar am	ounts.		
		De	duce the structures of B , C and D , exp	laining clearly the chemistry involved in the		
		rea	ctions.	[5]		
			Observations	Deductions	[
		W	hen B is treated with bromine under uv	Free radical substitution occurred.		
	light, it produces a mixture of brominated					
			ompounds.			

	observations. [4]
	Characteristic Test for Acids Na2CO3(s), warm. ; Effervescence observed. Colourless, odourless gas evolved gave a white ppt in Ca(OH)2. For the alcohol, no effervescence observed. ;
	<u>Characteristic test for alcohols</u> K ₂ Cr ₂ O ₇ , dilute H ₂ SO ₄ , heat ; Orange solution turns green. ;
(d)	Arrange the following compounds according to decreasing K_a values. Explain your answer.
	CH_3COOH , $CH_2CICOOH$, CH_3CH_2COOH
	[3]
	$CH_2C/COOH > CH_3COOH > CH_3CH_2COOH$; The larger the K_a value, the stronger the acid.
	 Cl has an electron-withdrawing effect ⇒ enabling the negative charge on the O atom to be dispersed through the anion, stabilising it. ⇒ Reduction of the negative charge on the oxygen makes CH₂ClCOO⁻ a more stable anion than CH₃COO⁻. ; ∴ CHCl₂COOH is a stronger acid than CH₃COOH.
	CH ₃ CH ₂ COOH has a larger alkyl group compared to CH ₃ COOH. This led to a greater
	electron donating effect. The negative charge on the O atom in CH ₃ CH ₂ COO ⁻ was intensified,
	destabilising the anion. Therefore, the acidity of CH_3CH_2COOH is reduced. ;
	[Total:20]

END OF PAPER 2