Paper 1 (MCQ)

1. C	6. B	11. D	16. C
2. A	7. D	12. C	17. B
3. A	8. B	13. B	18. D
4. C	9. A	14. C	19. A
5. B	10. D	15. B	20. D

Paper 3 - Section A – 55m

Q/No.	Answer	Comments/Instructions/ Suggestions to Markers	М
1a	Carbon dioxide;		[1]
1b	acidified potassium manganate(VII);		[1]
1c	silver chloride;		[1]
1d	Methane;		[1]
2ai	energy $Mg + H_2SO_4$ $MgSO_4 + H_2$ progress of reaction		[1]
2aii	Energy of the reactants is higher than the products showing that energy is transferred /released into the surroundings;		[1]
2bi	Magnesium oxide and hydrogen gas;		[1]
2bii	Silver, chromium, beryllium, magnesium;		[1]
3ai	covalent		[1]
3aii		 -number of atoms -number of bonding electrons -number of non bonding electrons 3pt = 2m 1 to 2 pt = 1m 	[2]
3bi	there are <u>strong electrostatic forces of attraction</u> between the ions; large amount of energy is needed to <u>overcome</u> the forces;		[2]
3bii	mobile ions/ free moving ions present in molten state only;		[1]
4a	78;		[1]

Q/No.	Answer	Comments/Instructions/ Suggestions to Markers	Μ
4b	<u>nitrogen and oxygen under high temperatures</u> in the car engines <u>react</u> to form nitrogen monoxide;		[1]
4c	in <u>large quantities</u> cause <u>death</u> / <u>prevents blood</u> from <u>transporting</u> <u>oxygen /</u>		[1]
4d	Carbon dioxide is released through combustion of (carbon containing) fuels / respiration / decomposition / decay; Carbon dioxide is taken in through photosynthesis / ocean uptake; If carbon dioxide released is more than carbon dioxide taken in, there will be a net increase in carbon dioxide in the atmosphere / Carbon dioxide released will be balanced by or is equal to the carbon dioxide taken in.;		[3]
5(a)	G;		[1]
5(b)	Е;		[1]
5(c)	D;		[1]
5(d)	F & G;		[1]
5(e)	H;		[1]
6a	Black solid Colourless solution	Drawing – 1m Label – 1m	[2]
6b	$\begin{split} M &- CO_2 \ / \ carbon \ dioxide \\ N &- BaSO_4 \ / \ barium \ sulfate \\ O &- CuCl_2 \ / \ copper(II) \ chloride \\ P &- Cu(OH)_2 \ / \ copper(II) \ hydroxide \\ Q &- AgCl \ / \ silver \ chloride \end{split}$		[5]
6с	$\begin{array}{l} Ba(NO_{3})_{2} (aq) + SO_{4}^{2-} (aq) & BaSO_{4} (s) + 2NO_{3}^{-} (aq) \\ Ba^{2+} (aq) + SO_{4}^{2-} (aq) & BaSO_{4} (s) \\ 2HNO_{3} (aq) + CO_{3}^{2-} (aq) & 2NO_{3}^{-} (aq) + H_{2}O (l) + CO_{2} (g) \\ 2H^{+} (aq) + CO_{3}^{2-} (aq) & H_{2}O (l) + CO_{2} (g) \\ CuCl_{2} (aq) + 2AgNO_{3} (aq) & 2AgCl (s) + Cu(NO_{3})_{2} (aq) \\ Ag^{+} (aq) + Cl^{-} (aq) & AgCl (s) \end{array}$	formula [1] balanced equation [1] state symbols [1]	[3]

Q/No.	Answer	Comments/Instructions/ Suggestions to Markers	М
	$\operatorname{Cu}Cl_2(\operatorname{aq}) + 2\operatorname{NaOH}(\operatorname{aq}) = 2\operatorname{NaC}l(\operatorname{aq}) + \operatorname{Cu}(\operatorname{OH})_2(\operatorname{s})$		
_ .	$Cu^{2^{+}}(aq) + 2OH^{-}(aq) = Cu(OH)_{2}(s)$		
7 a i	C _n H _{2n+1} COOH		[1]
7aii	same general formula / similar chemical properties / shows a gradation in physical property	1pt = 1m, max 2m	[2]
7b	produce <u>hydrogen ions / H⁺</u> in <u>aqueous</u> solution / <u>water</u>		[1]
7c	 arrangement: from quite closely packed, disorderly manner to far apart, disorderly manner or randomly arranged movement: from sliding over each other to move randomly at high speed or quickly 	4 pt = 3m 2 to 3 pt = 2m 1 pt = 1m	[3]
7di	Mr of propanoic acid = $12 \times 3 + 1 \times 6 + 2 \times 16 = 74$		[1]
7dii	Concentration = 125 / 74 = 1.69		[1]
7diii	Concentration = $1/2 = 0.500$		[1]
8a	Powdered marble is of smaller particle size; When particle size decreases, exposed surface area increases / surface area: volume ratio increases; Frequency of effective collisions increases; Speed of reaction will increase and affect the results;	2 pt = 1m	[2]
8bi	 At a lower temperature reacting particles have lesser kinetic energy / less particles have energy greater than or equal to activation energy <u>lower frequency of effective collision</u> reaction is <u>slower</u> / graph or gradient is <u>less steep</u> 	3pt = 2m 1 or 2 pt = 1m	[2]
8bii	 At a lower concentration the <u>same volume</u> of acid used will produce <u>lesser volume of gas</u> lesser reacting particles per unit volume <u>lower frequency of effective collision</u> reaction is <u>slower</u> / graph or gradient is <u>less steep</u> 	4 pt = 3m 2 or 3 pt = 2m 1pt = 1m	[3]
8ci	Mole of $CO_2 = 100 / 24000 = 1/240$; Mr of $CaCO_3 = 40 + 12 + 16 \times 3 = 100$ Mass of $CaCO_3 = 1/240 \times 100 = 0.417 \text{ g}$;		[2]
8cii	Mass of $CaCO_3 = 0.417 \text{ x } 2 = 0.834 \text{ g}$;		[1]

Paper 3 - Section B - 10m (2 choose 1 question)

Q/No.	Answer	Comments/Instructions/ Suggestions to Markers	Μ
9(a)	Ca: 2,8,8,2;	3pt = 2m	
	2 valence electrons hence in Group 2;	1 or 2 pt = 1 m	[2]
	4 electron shells hence in Period 4;		
9(bi)	Hydrogen		[1]
9(bii)	OH-		[1]
9(biii)	Add <u>Universal Indicator</u> into the solution;		
	<u>Compare</u> the resulting <u>colour with a pH chart</u> to determine the pH;		[2]
9(c)	Bubbles of gas observed; <u>Violent reaction with potassium</u> and <u>calcium reacts readily;</u> <u>Potassium floats</u> on water and <u>calcium sinks;</u>	A: K – lilac flame seen / catches fire	[3]
9(d)	Argon has completely filled valence shell and is unreactive		[1]
10(ai)	Cracking naphtha is essential to <u>match the demand for fractions</u> ; containing <u>smaller molecules</u> from the refinery process;		[2]
10(aii)	Hydrocarbon X H H H H H H H $H - C - C - C - C - C - C - H$ $H H H H H$ Hydrocarbon Y $H - H$	1m each	[2]
10(aiii)	Bromine water / aqueous bromine / bromine solution; X – remains reddish brown; Y – turns colourless;	3pt = 2m 1 or 2 pt = 1m	[2]
10(aiv)	I I I I H H H H Repeat Uni Polyether Polyether	correct partial drawing with at least 2 carbon [1] two repeating units [1]	[2]
10(bi)	Polyunsaturated contain hydrocarbon chains with two or more carbon-carbon double bonds in each chain		[1]
10(bii)	The <u>carbon-carbon double bond</u> gets <u>broken</u> / become <u>single</u> <u>bond</u> / <u>hydrogen</u> are added <u>across the double bond</u>		[1]

Submitted on: 20 June 2024