Answers / Marking Scheme

Sec 4E Express Prelim 2021

Physics

Paper 1

D
A
В
D
В
D
С
С
С
В

11	В
12	С
13	D
14	D
15	С
16	Α
17	В
18	A
19	A
20	Α

С	В	В	A	D	Α	В	С	В	С
21	22	23	24	25	26	27	28	29	30

31	С
32	D
33	С
34	В
35	В
36	Α
37	В
37 38	B C
37 38 39	B C C

Paper 2 Section A

1		Scale	1
		1	
		200	
		TAV	
		/. [w	
		E.	
		* net	1
		Correct vector diagram with arrows	1
			3m
2	(a)(i)	KE gained = $\frac{1}{2} \times 40 \times 1.5^2 - 0 \text{ J} = 45 \text{ J}$	1
	(a)(II)	WD = 30 x 6 = 180 3 WD = gain in KE + WD against resistive force	
		180 – 45 = f x 6.0 m	1
	(1-)	f = 22.5 N	1
	(D)	$WD = Area under the graph = 30 x 6 + \frac{1}{2} x 30 x 4 = 240 JAverage power= 240 ÷10.0 = 24 W$	
			6m
3	(a)	When randomly moving gas molecules hit the walls of the container	1
		The force per unit area exerted on the walls of the container is the	'
		pressure.	1
	(b)(i)	As paint is used up, the volume of air in the can increases. Thus the	1
		The frequency of collision between the gas particles and the walls	
		decreases. Thus the force exerted per unit area decreases.	1
	(b)(ii)	The average kinetic energy of the remaining gas molecules inside	
		decreases.	1
			5m
4	(0)		2
4	(a)		3
		N	
		F. F.	
	(b)	For a body at equilibrium about a pivot, the principle of moments	1
		states that sum of clockwise moments about the pivot is equal to	
	(c)	Taking moment about knee	

		F(85) = 600(50) F = 353 N	2
	(d)	Sum of upward forces = Sum of downward forces	
		F + N = W 353 + N = 600	
		N = 247 N	1
			<u>8m</u>
5	(2)	arrangement.	
5	(a)	Ice: in lattice / regular / arranged / orderly / fixed in place Water: random / irregular / not arranged / not orderly	1
		Ice: vibrate	
		Water: move (around) or slide over each other	1
	(b)(i)	m = 1800 × 0.025 × 920	1
		=41 000 kg	1
	(b)(ii)	$Q = mc\Delta\theta = 2.1 \times 10^{3} \times 41\ 000 \times 3.5$ = 3.0 × 10 ⁸ L	1
			6m
6	(a)	Microwaves	1
	(1-)	microwave ovens / handphone signal transmission	1
	(0)	$ \begin{array}{l} 1 = 1/t \\ = 1/(12 \times 10^9) \\ = 8.33 \times 10^{-11} \text{ s} \end{array} $	1
	(C)	v = f λ 3.0 x 10 ⁸ = (12 x 10 ⁹)(λ) λ = 0.025 m	1
	(d)(i)	 Any one of the following differences: Laser light is a transverse wave while ultrasound is a longitudinal wave. Laser light can travel in vacuum but ultrasound cannot travel in vacuum. Laser light travels at almost 3 x 10⁸ m/s in air while ultrasound travels at about 340 m/s in air. 	1
	(d)(ii)	Ultrasound cannot travel through space as there are no particles that enable transmission of ultrasound.	1
			8m
7	(a)	A (fixed)resistor B thermistor C L.E.D. OR light emitting diode (2 correct 1m; 3 correct 2m)	2
	(b)	 any four from six: if cold / hot resistance of thermistor high / low if cold / hot voltage (across) thermistor high / low if cold / hot voltage of input to LED high / low if cold / hot there is current / no current in LED if cold LED lights / brighter if hot LED does not light / dimmer 	4
	1		i olij

8	(a)	When the current exceeds the fuse rating, the wire in the fuse melts	1
		(accept fuse blown)	
		This opens the circuit and protects the circuit.	1
	(b)	operating current of fan = 1.25 A	
		operating current of heater = 10.4 A	
		Total I = 11.7 A	1
		Fuse will blow under normal operating condition.	1
		(only award if there is calculation)	
	(C)	Fuse is connected to the neutral wire. It should be connected to live	
		wire.	1
		Earth wire is connected the heater coil, instead of the metal casing.	
		Earth wire should be connected to metal casing of heater coil.	1
	(d)	Total I drawn = 1.25 + 10.42 = 11.67 A	
		Effective R = 240 / 11.67 = 20.6 Ω	1
			1
		OR	
		R coil = 23.04 Ω	
		R lamp = 192 Ω	
		R = (1/(240^2/2500) + 1/(240^2/300))^-1 = 20.6 Ω [1]	
			8m

Section B

	(b)(i)	Speed of light changes in different media.	1
	(b)(ii)	The higher the refractive index, the smaller the focal length.	1
	(b)(iii)	In a high refractive index material, the light bends more towards the normal/smaller angle of refraction.	1
		Light ray will converge towards each other in a shorter distance.	1
	(b)(iv)	A thinner/lighter lens can be used.	1
			10m
10	(a)	Speed is a scalar quantity while velocity is vector quantity (accept direction vs no direction)	1
	(b)	From t = 0 to 0.88s, velocity decreases constantly / constant	1
		negative acceleration /constant deceleration.	
		At t = 0.888, ball is momentarily at rest.	
		From t = 0.88 to 1.8 s, ball accelerates uniformly in the opposite direction .	1
	(c) (i)	0.88s	1
	(c)(ii)	Distance = 0.5 x 8.8 x 0.88	
		= 3.87m	1
	(d)	The ball hits ground or short time for deceleration	
	(e) (f)	Kinetic energy of ball converted to thermal energy + sound energy	1
	(T)	Any 2:	2
		 line not straight or velocity does not change uniformly or gradient not constant smaller area under (first part of) graph or less distance travelled slower final velocity initial downward gradient steeper 	
			10m
11 E	(a)(i)	7.5 V	1
	(a)(ii)	R = V / I = 7.5 / 4.0 = 1.9 Ω	1 1
	(a)(iii)	$P = VI = 6.5 \times 4.0$	1
		P = 26 W	1
	(a)(iv)	resistance increases hence reading of ammeter decreases	1
	(0)	correct shape	
	(0)	at least one arrow N to S (primarily upwards) and none wrong	1
	(C)	induced with a South pole.	
			10m
11 0	(a)(i)	An alternating current is where the flow of charge changes direction at regular intervals	1
	(a)(ii)	When the magnet rotates, there is a change in the magnetic flux within the coil. This induces an e.m.f. that produces an induced current.	1

	OR the magnetic field lines cut the coil	
(a)(iii)	When the magnet rotates towards the coil, an i nduced a	1
	current is produced in one direction, and when it rotates away	
	from the soft iron, an induced current is produced in the opposite	1
	direction.	
(a)(iv)	Any 1 way:	1
	Increase the speed of rotation of magnet	
	Use a stronger permanent magnet	
	Use a higher number of turn of the coil	
	Decrease distance between the coil and magnet	
	Use a lower resistance lamp	
(a)(v)	It helps to concentrate the magnetic flux through the coils.	1
(b)(i)	Higher voltage reduces the current, and this reduces power loss in	1
	the transmission cables.	
(b)(ii)	P = I x V	
	= 100 x 23 000 = 2 300 000 W or 2300 kW or 2.3 MW	1
(b)(iii)	Vp/Vs = Is/Ip	
	23 000 / 660 000 = ls / 100	1
	Is = 3.48 A	1
		10m