

## Geylang Methodist School (Secondary) End-of-Year Examination 2022

| Candidate<br>Name |              |  |
|-------------------|--------------|--|
| Class             | Index Number |  |

## MATHEMATICS

Paper 1

Candidates answer on the Question Paper.

Setter : Mr Wong Han Ming Mr Kenneth Soh

READ THESE INSTRUCTIONS FIRST

Write your name, index number and class on all the work you hand in. Write in dark blue or black pen. You may use a pencil for any diagrams or graphs. Do not use staples, paper clips, highlighters, glue or correction fluid.

#### Answer all questions

The number of marks is given in brackets [] at the end of each question or part question.

If working is needed for any question, it must be shown in the space below the question. Omission of essential working will result in the loss of marks. The total number of marks for this paper is 50.

You are expected to use a scientific calculator to evaluate explicit numerical expressions. If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to 3 significant figures. Give answers in degrees to one decimal place.

For  $\pi$ , use either your calculator value or 3.142.

| For Examiner's Use |  |
|--------------------|--|
| 50                 |  |

This document consists of **13** printed pages and 3 blank pages.

Sec 2 Express

1 hour 15 minutes

06 Oct 2022

Mathematical Formulae

Geometry and Measurement

Curved Surface Area of a cone =  $\pi rl$ 

Surface Area of a sphere =  $4\pi r^2$ 

Volume of a cone = 
$$\frac{1}{3}\pi r^2 h$$
  
Volume of a sphere =  $\frac{4}{3}\pi r^3$ 

Answer **all** the questions.

1 (a) Express 26.5% as a fraction in its simplest form.

Answer [1]

(b) Express the ratio of 6 kg to 350 g in its simplest form.

Answer \_\_\_\_\_ [1]

2 5 cm on a map represents 8 km on the ground.

(a) Calculate the distance between two houses, in km, which is represented by 5.5 cm on the map.

Answer km [2]

(b) Calculate the area of a park on the map, in  $cm^2$ , if the actual area is 7.168 km<sup>2</sup>.

Answer  $cm^2$  [2]

**3** Simplify the following expressions.

(a) 
$$\frac{3a}{4b} \times \frac{8b^3}{9a^2}$$

(b) 
$$\frac{3x-1}{x^2-5x-6} - \frac{2}{6-x}$$
 [1]

*Answer* [3]

(c) 
$$\frac{2x^2-8}{5y^3} \div \frac{6x-12}{10y}$$

*Answer* [3]

4 (a) A polygon has n sides. Three of its exterior angles are 20°, 21° and 22°. The remaining exterior angles are 27° each. Find the value of n.

*Answer* <u>*n*</u> = [2]

(b) Find the sum of all its interior angles of the polygon in part (a).

Answer \_\_\_\_\_\_ ° [2]

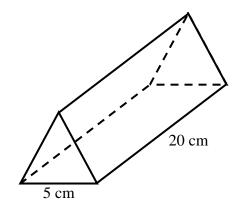
5 Expand and simplify the following completely.

(a) x - 3(x + 2)

Answer [1]

**(b)** (2a+5)(a-2)-(3a+2)(2a-5)

*Answer* [3]


6 Given that  $(x - y)^2 = 30$ , and xy = 3, find the value of  $x^2 + y^2$ .

*Answer* [3]

7 A handbag, originally priced at \$1599 was sold at a discount of x%. If Janet bought the handbag for \$1327.17, find the value of x.

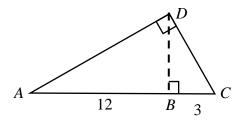
Answer x = [2]

8 A solid triangular prism, with an equilateral triangle cross-sectional area, is shown below.



Answer

(a) Find the volume of the prism.


## GMS(S)/EM/P1/EOY2022/2EXP

(b) The prism is painted on all surfaces and the cost of painting  $10 \text{ cm}^2$  of the prism is \$2.80. Calculate the total cost of painting the prism.

9

[3]

9 A triangular field ACD is shown below. AB = 12 m, BC = 3 m and angle  $DBC = 90^{\circ}$ . Triangle ABD is similar to triangle DBC.



(a) Find the length of *BD*.

Answer \_\_\_\_\_ [3]

(b) A pole, *TA*, is erected at point *A*. The top of the pole, *T*, makes an angle of  $20^{\circ}$  with the horizontal at point *C*. Find the height of *TA*.

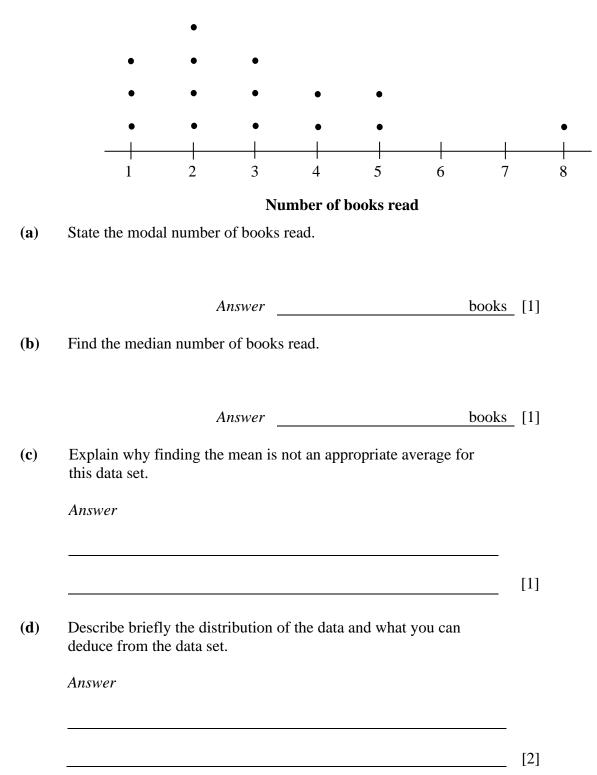
Answer

\_\_\_\_\_ [2]

**10** Triangle *ABC* is such that AB = 8 cm, BC = 6 cm and AC = 12 cm. Construct the triangle *ABC* in the space below. The line *AB* has been drawn for you. Measure the size of angle *ABC*.

Answer

$$A - B$$
Angle  $ABC =$ [3]


11 (a) It is given that y is inversely proportional to the square root of x, and that y = 5 when x = 9. Find the value of y when x = 25.

Answer y = [2]

(b) y is directly proportional to the cube of x. y = 10 for a certain value of x. Find the value of y when this value of x is increased by 200%.

Answer y = [2]

12 The dot diagram below represents the number of books read by 15 students in a month.



#### **END OF PAPER**

# **Blank Page**

# **Blank Page**

# **Blank Page**



## Geylang Methodist School (Secondary) End – of – Year Examination 2022

| Candidate<br>Name |              |  |
|-------------------|--------------|--|
| Class             | Index Number |  |

## MATHEMATICS

Paper 2

Sec 2 Express

1 hour 15 minutes

Candidates answer on the Question Paper.

10 October 2022

Setter: Ms Tan Kai Wei

### **READ THESE INSTRUCTIONS FIRST**

Write your name, index number and class on all the work you hand in. Write in dark blue or black pen. You may use a pencil for any diagrams or graphs. Do not use staples, paper clips, glue or correction fluid.

Answer all questions.

The number of marks is given in brackets [] at the end of each question or part question.

If working is needed for any question, it must be shown in the space below the question. Omission of essential working will result in loss of marks.

You are expected to use a scientific calculator to evaluate explicit numerical expressions. If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to 3 significant figures. Give answers in degrees to one decimal place.

For  $\pi$ , use either your calculator value or 3.142.

The total number of marks for this paper is 50.

| For Examiner's Use |  |  |
|--------------------|--|--|
| 50                 |  |  |

### Mathematical Formulae

Mensuration

Curved surface area of a cone =  $\pi rl$ 

Surface area of a sphere =  $4\pi r^2$ 

Volume of a cone = 
$$\frac{1}{3}\pi r^2 h$$

Volume of a sphere = 
$$\frac{4}{3}\pi r^3$$

- 1 It is given that  $a = \frac{2b 3c}{b + 2c}$ .
  - (a) Find a when b = 1 and c = -2.

Answer a = [1]

(b) Express b in terms of a and c.

Answer

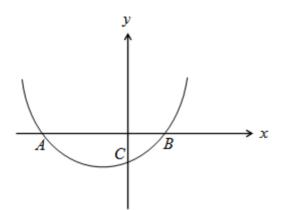
2 Solve the following simultaneous equations.

x+2y-2=01.5x-y-5=0

Answer x =y = [3]

- 3 There are 15 girls and x boys in a group. The probability of selecting a boy randomly from the group is  $\frac{3}{8}$ .
  - (a) Find the value of *x*.

Answer x = [2]


(b) How many more boys are needed to join the group so that the probability of selecting a boy randomly is  $\frac{5}{8}$ ?

Answer boys [2]

4 Solve (3x+7)(x-3) = -x-11.

## Answer x = or [3]

5 The diagram shows the graph of  $y = x^2 + 2x - 8$ . The graph cuts the *x*-axis at *A*, *B* and the *y*-axis at *C*.



(a) Find the coordinates of *A*, *B* and *C*.

| Answer | <i>A</i> ( | , | ) | [1] |
|--------|------------|---|---|-----|
|        | <i>B</i> ( | , | ) | [1] |
|        | С(         | , | ) | [1] |

(b) Write down the equation of the line of symmetry of the graph.

*Answer* [1]

6 The variables x and y are connected by the equation  $y = -x^2 + 4x - 3$ . Some corresponding values of x and y are given in the following table.

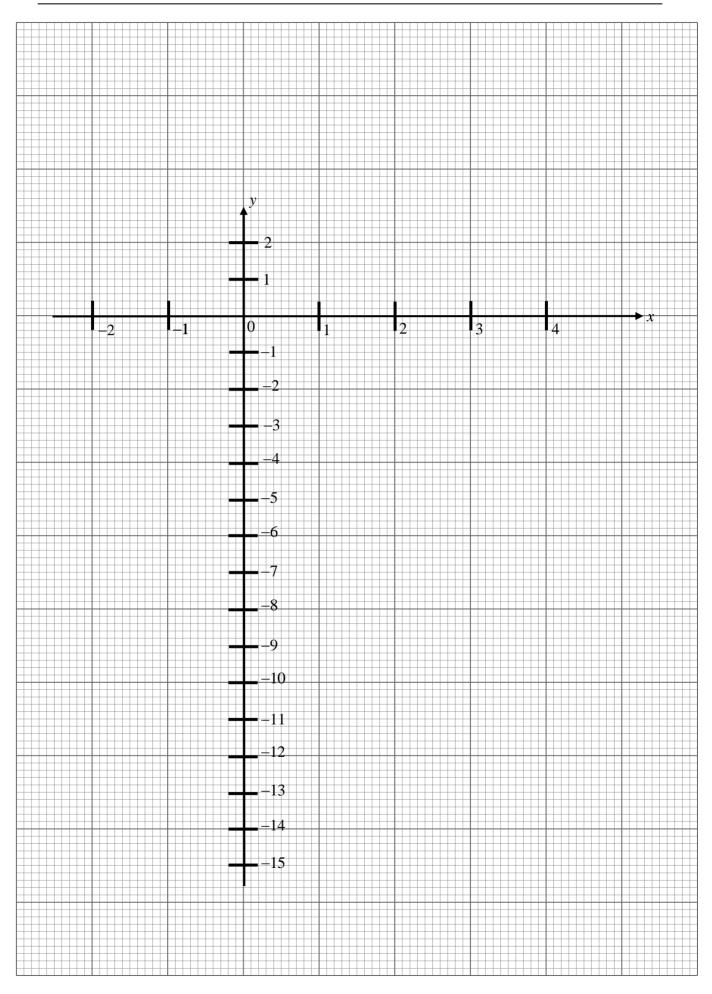
| ſ | x | -2  | -1 | 0  | 1 | 2 | 3 | 4  |
|---|---|-----|----|----|---|---|---|----|
|   | У | -15 | р  | -3 | 0 | 1 | 0 | -3 |

(a) Find the value of *p*.

Answer p = [1]

#### (b) Answer part (b) on the sheet of graph paper on the next page.

| On the axes provided, plot the points given in the table and join them |     |
|------------------------------------------------------------------------|-----|
| with a smooth curve.                                                   | [3] |


- (c) Use your graph to estimate
  - (i) the values of x when y = -1.5,

Answer x = or x = [2]

(ii) the maximum value of y.

Answer 
$$y = [1]$$

#### GMS(S)/Math/P2/EOY2022/2EXP



7 A shop sells yoghurt in cups as shown in Figure 1.

The cup can be modelled as a frustum, which is a part of a right circular cone, as shown in Figure 2.

The top of the cup is a circle of radius 5 cm. The base of the cup is a circle of radius 2 cm. The height of the cup is 9 cm.

All dimensions are given in centimetres.



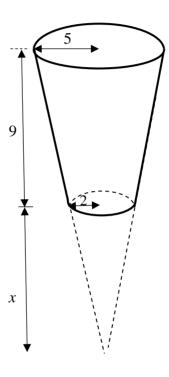


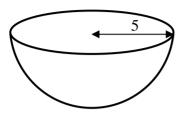



Figure 2

(a) Show that the value of x is 6.

[1]

Answer


(**b**) Find the volume of the frustum.

Answer  $cm^3$  [2]

(c) A plastic packaging will be printed around the side of the yoghurt cup. Each  $cm^2$  of plastic packaging costs 0.1 cents.

Find the cost of the plastic packaging for each yoghurt cup in dollars. Leave your answer to two decimal places.

(d) The shop also sells yoghurt in a bowl. The bowl can be modelled as a hemisphere with radius 5 cm.



The prices for the yoghurt is as shown below:

| Yoghurt in a cup  | \$1.80 |
|-------------------|--------|
| Yoghurt in a bowl | \$1.60 |

Determine if the yoghurt sold in a cup or a bowl is a better buy.

Answer

is a better buy because

[3]

8 (a) Solve the inequality 
$$\frac{2(x+3)}{3} < x-2$$
.

|             | Answer                                                                               | [2] |
|-------------|--------------------------------------------------------------------------------------|-----|
| <b>(b</b> ) | Represent the solution on a number line.                                             |     |
|             | Answer                                                                               |     |
|             | ←                                                                                    | [1] |
| (c)         | Hence write down the smallest possible value of $x$ if $x$ is<br>(i) a prime number, |     |
|             | Answer $x =$                                                                         | [1] |
|             | (ii) a perfect square.                                                               |     |
|             |                                                                                      |     |
|             | Answer <u>x</u> =                                                                    | [1] |

- **9** A factory uses an automated machine to fill up orange juice in cartons and plastic bottles. It takes *x* minutes to fill up one orange juice carton.
  - (a) Write down in terms of *x*, an expression for the number of orange juice cartons that can be filled up in an hour.

Answer [1]

(b) The process will take 1 minute longer if the orange juice is packed into a plastic bottle. Write down in terms of *x*, an expression for the number of orange juice bottles that can be filled up in an hour.

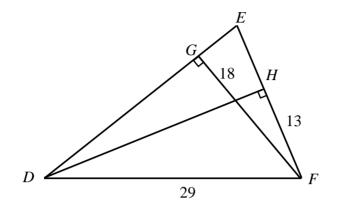
Answer [1]

(c) Orange juice is packed into cartons and bottles at the same time. A total of 50 cartons and bottles can be packed in an hour. Form an equation in terms of x and show that it reduces to  $5x^2 - 7x - 6 = 0$ .

Answer

14

[2]


(d) Solve the equation to find the values of *x*.

Answer x = or x = [2]

(e) Hence, find the number of orange juice bottles that can be filled up in an hour.

Answer bottles [1]

10 In triangle *EDF*, *GF* is perpendicular to *DE* and *DH* is perpendicular to *EF*. DF = 29 cm, GF = 18 cm and HF = 13 cm.



(a) Find angle *DEF*.

(b) Find the length of *EH*.

*Answer* \_\_\_\_\_ [2]

#### **END OF PAPER**

#### Answers for EOY Sec 2E P1

| <b>1</b> a | 53                                                                                | B1                                |
|------------|-----------------------------------------------------------------------------------|-----------------------------------|
| 14         | $\frac{33}{200}$                                                                  |                                   |
| 1b         | 120 : 7                                                                           | B1                                |
| 2a         | 5 cm : 8 km                                                                       |                                   |
| 2a         | 1 cm : 1.6 km                                                                     | M1                                |
|            | 5.5 cm : 8.8 km                                                                   | A1 (accept B2)                    |
| 2b         | Area scale is $25 \text{ cm}^2$ : $64 \text{ km}^2$                               |                                   |
| -~         | (accept 1 cm <sup>2</sup> : $2.56$ km <sup>2</sup> )                              | M1 for correct area               |
|            |                                                                                   | scale                             |
|            | Hence, if actual area is 7.168 km <sup>2</sup> ,                                  |                                   |
|            | area on map                                                                       |                                   |
|            | $-25_{3}$ 168                                                                     |                                   |
|            | $=\frac{25}{64}\times7.168$                                                       |                                   |
|            | $= 2.8 \text{ cm}^2$                                                              |                                   |
|            |                                                                                   | A1                                |
| <b>3</b> a | $\frac{3a}{4b} \times \frac{8b^3}{9a^2} = \frac{2b^2}{3a}$                        | A1 for correct                    |
|            | $\frac{1}{4b} \sqrt{9a^2}$ $-\frac{1}{3a}$                                        | numerical fraction                |
|            |                                                                                   | A1 for correct algebraic fraction |
| 3b         | 21 2 21 2                                                                         | M1 for factorising quad           |
| 50         | $\frac{3x-1}{x^2-5x-6} - \frac{2}{6-x} = \frac{3x-1}{(x-6)(x+1)} - \frac{2}{6-x}$ | denominator.                      |
|            |                                                                                   | denominator.                      |
|            | $=\frac{3x-1}{(x-6)(x+1)} + \frac{2}{x-6}$                                        | M1 for ability to                 |
|            | (x-6)(x+1) $x-6$                                                                  | recognise to change sign          |
|            | 3x-1 2(x+1)                                                                       | correctly for the 2 <sup>nd</sup> |
|            | $=\frac{3x-1}{(x-6)(x+1)} + \frac{2(x+1)}{(x-6)(x+1)}$                            | fraction                          |
|            |                                                                                   |                                   |
|            | $=\frac{3x-1+2x+2}{(x-6)(x+1)}$                                                   | A1                                |
|            |                                                                                   |                                   |
|            | $=\frac{5x+1}{(x-6)(x+1)}$                                                        |                                   |
|            |                                                                                   |                                   |
| <b>3</b> c | $\frac{2x^2-8}{5y^3} \div \frac{6x-12}{10y}$                                      | M1 for factorising                |
|            | $5y^3$ $10y$                                                                      | common factor 6                   |
|            | $2(x^2-4)$ 10 y                                                                   |                                   |
|            | $=\frac{2(x^2-4)}{5y^3} \times \frac{10y}{6x-12}$                                 | M1 for factorising by             |
|            |                                                                                   | special product                   |
|            | $=\frac{2(x-2)(x+2)}{5y^3} \times \frac{10y}{6(x-2)}$                             | 1 1                               |
|            | · · · · · · · · · · · · · · · · · · ·                                             | A1                                |
|            | $=\frac{2(x+2)}{3y^2}$                                                            |                                   |
|            | $3y^2$                                                                            |                                   |
|            |                                                                                   |                                   |
|            |                                                                                   |                                   |
|            |                                                                                   |                                   |

| 4a        | Number of 27° angles       |    |
|-----------|----------------------------|----|
|           | $=(360-20-21-22)\div 27$   |    |
|           | $= 297 \div 27$            |    |
|           | = 11                       | M1 |
|           |                            |    |
|           | Therefore,                 |    |
|           | n = 11 + 3                 | M1 |
|           | = 14                       | A1 |
| <b>4b</b> | Sum of all interior angles |    |
|           | $=(14-2) \times 180$       | M1 |
|           | $=2160^{\circ}$            | A1 |

| 5a         | x - 3(x + 2)                                                     |                                                  |
|------------|------------------------------------------------------------------|--------------------------------------------------|
|            | =x-3x-6                                                          |                                                  |
|            | =-2x-6                                                           | B1                                               |
| 5b         | (2a+5)(a-2) - (3a+2)(2a-5)                                       | M1 for expanding any one quad                    |
|            | $= 2a^2 - 4a + 5a - 10 - (6a^2 - 15a + 4a - 10)$                 | correctly                                        |
|            | $= 2a^2 - 4a + 5a - 10 - 6a^2 + 11a + 10$                        | M1 for removing the bracket after                |
|            | $= -4a^2 + 12a$                                                  | the operation of subtraction.                    |
| 6          | $(x-y)^2 = x^2 - 2xy + y^2$                                      | M1 for correct expansion of the                  |
| Ŭ          |                                                                  | special product                                  |
|            | $x^2 - 2xy + y^2 = 30$                                           |                                                  |
|            | $x^2 - 2(3) + y^2 = 30$                                          | M1 for subbing $xy = 3$ correctly                |
|            | $x^2 + y^2 = 30 + 6$                                             |                                                  |
|            | $x^2 + y^2 = 36$                                                 | A1                                               |
| 7          | Discount $= 1599 - 1327.17$                                      |                                                  |
|            | = \$271.83                                                       |                                                  |
|            | 271.83                                                           | M1 for any acceptable method                     |
|            | $x = \frac{271.83}{1599} \times 100\%$                           | with for any acceptable method                   |
|            | = 17%                                                            | A1                                               |
| 8a         | Let the height of the triangle be h.                             |                                                  |
| ou         | Then,                                                            |                                                  |
|            | $h^2 + 2.5^2 = 5^2$                                              | M1 for recognising Pythagoras'<br>Theorem as the |
|            | $h^2 = 25 - 6.25$                                                | (accept use TOA CAH SOH to find                  |
|            | h = sqrt(18.75)                                                  | the perpendicular height)                        |
|            | = 4.3301                                                         | M1 for finding h                                 |
|            | N7 1                                                             |                                                  |
|            | Vol $= (0.5 \times 5 \times 4.3201) \times 20$                   |                                                  |
|            | = (0.5  x  5  x  4.3301)  x  20<br>= 216.5063509 cm <sup>2</sup> | M1 for using the prism volume                    |
|            | $= 217 \text{ cm}^2 \text{ (correct to 3sf)}$                    | correctly<br>A1                                  |
|            |                                                                  |                                                  |
| <b>8</b> b | Area of 3 rectangular sides                                      |                                                  |
|            | $=(5\times20)\times3$                                            |                                                  |
|            | = 300                                                            | M1 for any each correct calculation              |
|            | Area of 2 triangles                                              |                                                  |
|            | $= = (\frac{1}{2} \times 5 \times 4.3301) \times 2$              |                                                  |
|            | =21.6506                                                         |                                                  |
|            | Total surface area                                               |                                                  |
|            | = 300 + 21.6506                                                  | M1                                               |
|            | $= 321.6506 \text{ cm}^2$                                        | 1411                                             |
|            |                                                                  |                                                  |

|            | Total cost                                                        |                                            |
|------------|-------------------------------------------------------------------|--------------------------------------------|
|            | $= 321.6506 \times (2.80 \div 10)$                                |                                            |
|            | $= 321.0500 \times (2.80 \pm 10)$<br>= \$90.06 (nearest cents)    | A1                                         |
| 9a         | Ratio of                                                          |                                            |
| <i>7</i> a |                                                                   |                                            |
|            | $\frac{AB}{BD} = \frac{BD}{BC}$                                   | M1 for the ability to use the correct      |
|            | BD BC                                                             | ratio                                      |
|            | $\frac{12}{BD} = \frac{BD}{3}$                                    | Tatio                                      |
|            | BD 3                                                              |                                            |
|            | $(BD)^2 = 36$                                                     |                                            |
|            | BD = 6                                                            | M1A1 for finding the value of <i>BD</i> .  |
|            | BD = 0                                                            | Note: if a student uses inspection,        |
|            |                                                                   | full 3 marks can be awarded only if        |
|            |                                                                   | at least one step of using ratio to        |
|            |                                                                   | verify is show explicitly.                 |
|            |                                                                   | Otherwise, 1 m only.                       |
| 9b         | ann height                                                        |                                            |
| 20         | $\tan 20^\circ = \frac{opp}{adj} = \frac{\text{height}}{15}$      | M1                                         |
|            |                                                                   | A1                                         |
|            | Height = $15 \tan 20^{\circ}$                                     |                                            |
|            | = 5.45955 m                                                       |                                            |
|            | = 5.46 m                                                          |                                            |
| 10         | ~ .                                                               |                                            |
| 10         | Construction                                                      | B1, B1 for each of the lines <i>BC</i> and |
|            |                                                                   | AC.                                        |
|            |                                                                   | A1 for correct angle. +/- 1 degree         |
| 11a        | $y\sqrt{x} = k$<br>$5\sqrt{9} = k$<br>k = 15<br>$y\sqrt{25} = 15$ |                                            |
|            | $5\sqrt{9} = k$                                                   |                                            |
|            | k = 15                                                            | N/1                                        |
|            | N - 15                                                            | M1                                         |
|            | $\sqrt{25} - 15$                                                  |                                            |
|            | $y\sqrt{25-15}$                                                   |                                            |
|            | 5y = 15                                                           | A1                                         |
| 11b        | y = 3                                                             |                                            |
| 110        | $y = kx^3$                                                        |                                            |
|            | $10 = kx^3$                                                       |                                            |
|            |                                                                   |                                            |
|            | When x increases by 200%, x is now $3x$ .                         |                                            |
|            |                                                                   |                                            |
|            | $y_{new} = k(3x)^3$                                               |                                            |
|            | $=27kx^3$                                                         | M1 for identifying $3x$ or triple the      |
|            |                                                                   | value of <i>x</i> .                        |
|            | = 27(10)<br>= 270                                                 |                                            |
|            | - 270                                                             | A1                                         |

| 12a | 2                                                                                                                                                    | B1                                                                                                                                                                                     |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 12b | 3                                                                                                                                                    | B1                                                                                                                                                                                     |
| 12c | The value 8 is an outlier and will increase the mean significantly. Hence, it will not be a good indication of the central tendency of the data set. | B1 for any other reasonable<br>remarks. Key word is <b>value 8</b><br>"gap between 5 to 8" "no value for<br>6 and 7" without explaining that it<br>will increase the mean will not get |
|     |                                                                                                                                                      | marks.                                                                                                                                                                                 |
| 12d | The data clusters around 2 to 3 books<br>There is a peak at 2 books<br>The data ranges from 1 to 8 books<br>There is a gap between 6 to 8 books      | B1 for any 1 reasonable<br>observation (not limited to the<br>examples given)                                                                                                          |
|     | Students should read more books.<br>Students read too little.<br>Students reads book every month.                                                    | B1 for deduction (statement should<br>be general and not specific)                                                                                                                     |
|     |                                                                                                                                                      |                                                                                                                                                                                        |

## Answers for 2022 Sec 2E EOY P2

| 1a | 2h-3c                                                 | B1                                                             |
|----|-------------------------------------------------------|----------------------------------------------------------------|
|    | $a = \frac{2b - 3c}{b + 2c}$                          |                                                                |
|    |                                                       |                                                                |
|    | $=\frac{2(1)-3(-2)}{(1)+2(-2)}$                       |                                                                |
|    | $=-\frac{8}{2}$                                       |                                                                |
|    | 3                                                     |                                                                |
| 1b | $a = \frac{2b - 3c}{b + 2c}$                          |                                                                |
|    | b + 2c $a(b+2c) = 2b - 3c$                            |                                                                |
|    | × ,                                                   |                                                                |
|    | ab + 2ac = 2b - 3c                                    | M1 (for forming linear equation)                               |
|    | ab - 2b = -3c - 2ac                                   |                                                                |
|    | b(a-2) = -3c - 2ac                                    |                                                                |
|    | $b = \frac{-3c - 2ac}{a - 2}$<br>x + 2y - 2 = 0 - (1) | A1                                                             |
| 2  | x + 2y - 2 = 0 - (1)                                  |                                                                |
|    | $\frac{3x}{2} - y - 5 = 0 - (2)$                      |                                                                |
|    | 2<br>From (1):                                        |                                                                |
|    | x = 2 - 2y - (3)                                      |                                                                |
|    | $x = 2^{-2} - 2y^{-3}$ (3)<br>Sub (3) into (2):       |                                                                |
|    |                                                       |                                                                |
|    | $\frac{3(2-2y)}{2} - y - 5 = 0$                       | M1 – For using substitution /                                  |
|    | 3(2-2y)-2y-10=0                                       | elimination method (attempt to form a new equation with just 1 |
|    | 6 - 6y - 2y - 10 = 0                                  | variable)                                                      |
|    | -8y = 4                                               |                                                                |
|    | 1                                                     |                                                                |
|    | $y = -\frac{1}{2}$                                    |                                                                |
|    | Sub $y = -\frac{1}{2}$ into (3):                      | A1 – value for $y$                                             |
|    | $x = 2 - 2(-\frac{1}{2}) = 3$                         |                                                                |
|    |                                                       | A1 – value for $x$                                             |

| <b>3</b> a | <i>x</i> 3                              |                                                   |
|------------|-----------------------------------------|---------------------------------------------------|
|            | $\frac{x}{15+x} = \frac{3}{8}$          | M1 – for showing $\frac{x}{15+x} = \frac{3}{8}$   |
|            | 8x = 45 + 3x                            | 15+x                                              |
|            | 5x = 45                                 |                                                   |
|            | <i>x</i> = 9                            | A1                                                |
| 3b         | Let y be the number of boys added.      |                                                   |
|            | $\frac{9+y}{24+y} = \frac{5}{8}$        | 0 + 5                                             |
|            | 24 + y = 8                              | M1 – for showing $\frac{9+y}{24+y} = \frac{5}{8}$ |
|            | 5(24 + y) = 8(9 + y)                    | 24+ y 8                                           |
|            | 120 + 5y = 72 + 8y                      |                                                   |
|            | -3y = -48                               |                                                   |
|            | <i>y</i> = 16                           | A1                                                |
| 4          | (3x+7)(x-3) = -x - 11                   |                                                   |
|            | $3x^2 - 2x - 21 = -x - 11$              | M1 - for expanding                                |
|            | $3x^2 - x - 10 = 0$                     | (3x+7)(x-3) correctly                             |
|            | (3x+5)(x-2) = 0                         |                                                   |
|            | $x = -\frac{5}{3}$ or $x = 2$           | A1 x2 for each value of $x$                       |
| 5a         | $y = x^2 + 2x - 8$                      |                                                   |
|            | To find coordinates of A and B: $y = 0$ |                                                   |
|            | $0 = x^2 + 2x - 8$                      |                                                   |
|            | 0 = (x+4)(x-2)                          |                                                   |
|            | x = -4 or $x = 2$                       |                                                   |
|            | A (-4,0)                                | B1 - for coordinates of A                         |
|            | B (2,0)                                 | B1 - for coordinates of B                         |
|            | To find coordinates of C: $x = 0$       |                                                   |
|            | $y = (0)^2 + 2(0) - 8$                  |                                                   |
|            | =-8                                     |                                                   |
|            | C(0, -8)<br>x = -1                      | B1 - for coordinates of C                         |
| 5b         | x = -1                                  | B1                                                |

| 6a       | p = -8                                            |                                       |
|----------|---------------------------------------------------|---------------------------------------|
| 6b       | Quadratic graph                                   | B1 – smooth curve passing             |
|          |                                                   | through all points                    |
|          |                                                   | B1 – correct plotting of points       |
|          |                                                   | B1 – labelling of graph               |
| 6ci      | x = 0.4  or  3.6                                  | B1 $\times$ 2 for each value read off |
| <i>(</i> | 1                                                 | the graph                             |
| 6cii     | <i>y</i> =1                                       | B1                                    |
| 7a       | $\frac{2}{5} = \frac{x}{x+9}$                     |                                       |
|          |                                                   |                                       |
|          | 5x = 2x + 18                                      | B1                                    |
|          | 3x = 18                                           |                                       |
|          | x = 6 (shown)                                     |                                       |
| 7b       | Volume of frustum                                 |                                       |
|          | 1 . 1 .                                           |                                       |
|          | $=\frac{1}{3}\pi(5)^2(15)-\frac{1}{3}\pi(2)^2(6)$ | M1 – for any 1 correct volume         |
|          | = 367.5663405                                     | seen                                  |
|          |                                                   |                                       |
|          | $= 368 \text{ cm}^2 (3\text{sf})$                 | A1                                    |
| 7c       | Slant height of larger cone                       |                                       |
|          | $=\sqrt{15^2+5^2}$                                |                                       |
|          | $=\sqrt{250}$                                     |                                       |
|          | Slant height of smaller cone                      |                                       |
|          |                                                   |                                       |
|          | $=\sqrt{6^2+2^2}$                                 | M1 - for finding either slant         |
|          | $=\sqrt{40}$                                      | height                                |
|          |                                                   |                                       |
|          | Curved surface area of frustum                    |                                       |
|          | $=\pi(5)(\sqrt{250}) - \pi(2)(\sqrt{40})$         | M1 – for finding curved               |
|          | = 208.6263536                                     | surface area of frustum               |
|          | 200.0205550                                       |                                       |
|          | Cost                                              |                                       |
|          | -208 6262526 0.1                                  |                                       |
|          | $=208.6263536 \times \frac{0.1}{100}$             |                                       |
|          | = \$0.2086263536                                  |                                       |
|          | = \$0.21 (2dp)                                    | A1 – for finding cost                 |

| 7d   | Volume of hemisphere bowl                                                       |                                                                                 |
|------|---------------------------------------------------------------------------------|---------------------------------------------------------------------------------|
|      | $= \frac{2}{3}\pi(5)^{3}$<br>= 261.7993878 cm <sup>3</sup>                      | M1 – volume of<br>hemisphere                                                    |
|      | Amt of yoghurt per $(in cup)$<br>= 367.5663405 ÷ 1.80                           |                                                                                 |
|      | $= 307.3003403 \div 1.80$<br>= 204.2035 cm <sup>3</sup> / \$                    |                                                                                 |
|      |                                                                                 |                                                                                 |
|      | Amt of yoghurt per $ (in bowl) $<br>= 261.7993878 ÷ 1.60                        |                                                                                 |
|      | $= 163.6246 \text{ cm}^3 / \$$                                                  | M1 – Amt of yoghurt per<br>\$ (in both cup and bowl)                            |
|      | Yoghurt in a cup is a better buy because there is more yoghurt per dollar paid. | A1 awarded only if method is reasonable                                         |
|      |                                                                                 | Accept alternative method if students find the cost of the yoghurt per $cm^3$ . |
| 8a   | $\frac{2(x+3)}{3} < x-2$                                                        | M1 – cross multiplying                                                          |
|      | 2x + 6 < 3x - 6                                                                 |                                                                                 |
|      | -x < -12                                                                        | A1 – correct inequality                                                         |
| 8b   | x > 12                                                                          | sign                                                                            |
|      | • • • • • • • • • • • • • • • • • • •                                           | B1 – for circle and arrow pointing right                                        |
| 8ci  | x = 13                                                                          | B1                                                                              |
| 8cii | x = 16                                                                          | B1                                                                              |

| 9a       | 60                                      | B1                               |
|----------|-----------------------------------------|----------------------------------|
|          | $\frac{1}{x}$                           |                                  |
| 9b       | 60                                      | B1                               |
|          | $\overline{x+1}$                        |                                  |
| 9c       | $\frac{60}{x} + \frac{60}{x+1} = 50$    |                                  |
|          |                                         | M1 combining into one            |
|          | $\frac{60x+60+60x}{(x-1)} = 50$         | M1 – combining into one fraction |
|          | x(x+1)                                  | naction                          |
|          | $120x + 60 = 50x^2 + 50x$               |                                  |
|          | $50x^2 - 70x - 60 = 0$                  | M1 – simplifying                 |
|          | $5x^2 - 7x - 6 = 0$ (shown)             |                                  |
| 9d       | (5x+3)(x-2) = 0                         | M1 – factorizing                 |
|          | $x = -\frac{3}{5}$ or $x = 2$           | A1 – both values of $x$          |
|          |                                         |                                  |
| 9e       | $\frac{20 \text{ bottles}}{\angle HFD}$ | B1                               |
| 10a      |                                         |                                  |
|          | $=\cos^{-1}(\frac{13}{29})$             |                                  |
|          | = 63.36688°                             | M1                               |
|          | $\angle GDF$                            |                                  |
|          |                                         |                                  |
|          | $=\sin^{-1}(\frac{18}{29})$             |                                  |
|          | = 38.36651°                             | M1                               |
|          |                                         |                                  |
|          | $\angle DEF$                            |                                  |
|          | =180 - 63.36688 - 38.36651              |                                  |
|          | = 78.26661                              |                                  |
| <u> </u> | $=78.3^{\circ}$ (1dp)                   | A1                               |
| 10b      | $DH = \sqrt{29^2 - 13^2}$               | M1 length of DU                  |
|          | = 25.92296                              | M1 – length of $DH$              |
|          | $\tan 78.26661 = \frac{25.92296}{EH}$   |                                  |
|          | <i>EH</i> = 5.38414                     |                                  |
|          | = 5.38 cm (3 sf)                        | A1 – length of <i>EH</i>         |