Qn	Suggested Solutions
1(a) (i)	$\left z+w\right = \left z+\left(i\sqrt{3}\right)z\right = \left \left(1+i\sqrt{3}\right)z\right = \left 1+i\sqrt{3}\right \left z\right = 2\lambda$
	$\arg(z+w) = \arg\left(\left(1+i\sqrt{3}\right)z\right) = \arg\left(1+i\sqrt{3}\right) + \arg\left(z\right) = \frac{\pi}{3} + \theta$
	Alternatively,
	Given that $z = \lambda e^{i\theta}$, where $\lambda > 0$ and $0 < \theta < \frac{\pi}{2}$, and $w = i\sqrt{3}z$, find
	$ z = \lambda e^{i\theta} = \lambda$ $ w = i\sqrt{3}z = \sqrt{3}\lambda$ Im axis B B A θ Real axis
	By vector addition, $z + w = \overrightarrow{OA} + \overrightarrow{OB}$
	By Pythagoras Theorem, $ z + w = \sqrt{\lambda^2 + (\sqrt{3}\lambda)^2}$ $= \sqrt{4\lambda^2}$ $= 2\lambda$
1(a) (ii)	$\arg(z+w) = \arg(z) + \tan^{-1}\left(\frac{\sqrt{3}\lambda}{\lambda}\right)$ $= \theta + \frac{\pi}{2}$
	-013

2012 NJC H2 Math Prelim Paper 2 Solutions

	
	$\sin\frac{\pi}{3} = \frac{y + \sqrt{3}}{\sqrt{3}} \Longrightarrow \frac{\sqrt{3}}{2} = \frac{y + \sqrt{3}}{\sqrt{3}}$
	$\therefore y = \frac{3}{2} - \sqrt{3}$
	$\cos\frac{\pi}{2} = \frac{x-1}{2} \Longrightarrow \frac{1}{2} = \frac{x-1}{2}$
	$3 \sqrt{3} 2 \sqrt{3}$
	$\therefore x = \frac{\sqrt{3}}{2} + 1$
	$\therefore z = \frac{\sqrt{3}}{2} + 1 + i\left(\frac{3}{2} - \sqrt{3}\right)$
2(a)	x = distance of the car from the intersection
	v = distance between the car and truck
	By Cosine Rule
	$y^2 = r^2 + 48^2 - 2r(48)\cos 120^\circ$
	$y^2 = x^2 + 48x + 2304$ (shown)
	$y = x + \tau 0x + 250\tau (\text{Shown})$
	Differentiating implicitly with respect to time
	dy = dr = dr
	$2y \frac{dy}{dt} = 2x \frac{dx}{dt} + 48 \frac{dx}{dt}$
	ur ur ur
	The rate of change of the car is $\frac{dx}{dt} = -60$ because it is traveling toward the
	intersection.
	When $x = 15$
	$v^2 = x^2 + 2304 + 48x$
	$y^{2} = 15^{2} + 2304 + 48(15) = 3249 \implies y = 57$
	$y = 10 + 2001 + 10(10) = 0210 \rightarrow y = 01$
	$2(57) \frac{dy}{dt} = (2(15) + 48) \frac{dx}{dt}$
	dt dt
	$\frac{\mathrm{d}y}{\mathrm{d}y} = -41 \frac{1}{\mathrm{d}y}$
	d <i>t</i> 19
	=-41.1. (3sf)
	Hence, the distance between the car and the truck is decreasing at a rate of
	41.1 km/h
2(b)	Cost for roof = P per unit area;
(1 st	Cost for curved surface area and base = $3P$ per unit area.
part)	Total cost = C .
	Area = $2\pi r^2 + \pi r^2 + 2\pi rh$ (where <i>h</i> is the height of the cylinder)
	$\Rightarrow C = 7\pi r^2(P) + 2\pi rh(3P)$
	$\Rightarrow C = \pi r P(7r + 6h)$

	$\Rightarrow \frac{C}{6\pi rP} = 7r + 6h$
	$\Rightarrow \qquad h = \frac{C}{6\pi rP} - \frac{7r}{6}$
	$V = -\frac{2}{3}\pi r^3 + \pi r^2 h$
	$=\frac{2}{3}\pi r^{3} + \pi r^{2} \left(\frac{C}{6\pi rP} - \frac{7r}{6}\right)$
	$=\frac{2}{3}\pi r^{3} + \frac{Cr}{6P} - \frac{7\pi r^{3}}{6}$
	$=\frac{Cr}{6P}-\frac{\pi r^3}{2}$
2(b) (2 nd	$\frac{dV}{dr} = \frac{C}{6P} - \frac{3}{2}\pi r^2 = 0$
part)	$\Rightarrow r = \sqrt{\frac{C}{9P\pi}}$
	$\frac{\mathrm{d}^2 V}{\mathrm{d}r^2} = -3\pi r < 0$ when $r = \sqrt{\frac{C}{9P\pi}}$, the volume is maximum.
	Thus, cost of top = $\pi r^2 P = \pi \left(\frac{C}{9\pi P}\right) P$
	$=\frac{C}{9}$
3 (a)	$\int \frac{x+3}{x^2+4x+9} \mathrm{d}x$
	$=\frac{1}{2}\int \frac{(2x+4)}{x^2+4x+9} dx + \int \frac{1}{(x+2)^2+5} dx$
	$= \frac{1}{2} \ln \left x^2 + 4x + 9 \right + \frac{1}{\sqrt{5}} \tan^{-1} \frac{x+2}{\sqrt{5}} + c \text{ or}$
	$\frac{1}{2}\ln\left(x^2 + 4x + 9\right) + \frac{1}{\sqrt{5}}\tan^{-1}\frac{x+2}{\sqrt{5}} + c$

3(h)	$d^2 v = 2$
	$\frac{d^2 y}{dr^2} = \frac{2}{1+3r}$
	dv = 2 2 2
	$\frac{dy}{dx} = \int \frac{2}{1+3x} dx = \frac{2}{3} \ln(1+3x) + c$
	Since the curve has gradient value of 2 at the $point(0,1)$,
	then we have
	$2 = \frac{2}{3}\ln 1 + c \Longrightarrow c = 2$
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{2}{3}\ln\left(1+3x\right)+2$
	$y = \int \frac{2}{3} \ln(1+3x) + 2 \mathrm{d}x$
	$=\frac{2}{3}\left[x\ln(1+3x) - \int \frac{3x}{1+3x} dx\right] + 2x + D$
	$=\frac{2}{3}\left[x\ln(1+3x) - \int 1 - \frac{1}{1+3x} \mathrm{d}x\right] + 2x + D$
	$=\frac{2}{3}\left[x\ln(1+3x) - \left(x - \frac{1}{3}\ln(1+3x)\right)\right] + 2x + D$
	$=\frac{2}{3}\left[x\ln(1+3x) - x + \frac{1}{3}\ln(1+3x)\right] + 2x + D$
	Since curve passes through the point $(0,1)$, we have
	$1 = \frac{2}{3} \left[0 - 0 + \frac{1}{3} \ln(1) \right] + 0 + D \Longrightarrow D = 1$
	$\therefore y = \frac{2}{3} \left[x \ln (1 + 3x) - x + \frac{1}{3} \ln (1 + 3x) \right] + 2x + 1$
	$=\frac{2}{3}\left(x+\frac{1}{3}\right)\ln(1+3x)+\frac{4}{3}x+1$
4 (i)	$y = \sqrt{4 - x^2}$ is the equation of a semicircle centred at (0.0) with radius 2
	Hence
	$\int_{-\infty}^{2} \sqrt{4-r^2} dr = \text{Area of semicircle} = \frac{1}{2} \pi (2)^2 - 2\pi$
	J_{-2} , λ and $-\lambda$ and λ be metric $-\lambda$ λ λ λ λ λ
4(ii)	Solving $x^{2} + (y-2)^{2} = 4$ and $y = \left \frac{x}{2} \right + 1$, we have
	Consider

	$x^2 + \left(\left \frac{x}{2}\right - 1\right)^2 = 4$
	$\Rightarrow x^2 + \frac{x^2}{4} - 2\left \frac{x}{2}\right + 1 = 4$
	$\Rightarrow \frac{5}{4}x^2 + x - 3 = 0$
	$\Rightarrow 5x^2 + 4 x - 12 = 0$
	For <i>x</i> < 0,
	$\Rightarrow 5x^2 + 4x - 12 = 0$
	$\Rightarrow x = -2 \text{ or } \frac{6}{5} \text{ (rejected)}$
	Alternative by symmetrical properties, the other intersection is at $x = -2$. For $x > 0$
	$5x^2 - 4x - 12 = 0$
	$\Rightarrow x = 2 \text{ or } -\frac{6}{5} \text{(rejected)}$
4(ii) 1 st	Volume = $\pi \int_{-2}^{2} \left(\left \frac{x}{2} \right + 1 \right)^{2} - \left(2 - \sqrt{4 - x^{2}} \right)^{2} dx$
part	$=\pi \int_{-2}^{2} \frac{x^{2}}{4} + 2\left \frac{x}{2}\right + 1 - \left(4 - 4\sqrt{4 - x^{2}} + 4 - x^{2}\right) dx$
	$=\pi \int_{-2}^{2} \frac{5}{4} x^{2} + x - 7 + 4\sqrt{4 - x^{2}} dx \text{ (shown)}$
4(ii) 2nd	Volume = $\pi \int_{-2}^{2} \frac{5}{4} x^{2} + x - 7 + 4\sqrt{4 - x^{2}} dx$
part	$=\pi \left[\int_{-2}^{2} \frac{5}{4} x^{2} - 7 \mathrm{d}x + \int_{-2}^{2} x \mathrm{d}x + \int_{-2}^{2} 4\sqrt{4 - x^{2}} \mathrm{d}x \right]$
	$=\pi \left[\frac{5}{12}x^{3}-7x\right]_{-2}^{2}-\pi \int_{-2}^{0}x dx+\pi \int_{0}^{2}x dx+4\pi \left(2\pi\right)$
	$= -\frac{64}{3}\pi - \pi \left[\frac{x^2}{2}\right]_{-2}^0 + \pi \left[\frac{x^2}{2}\right]_{0}^2 + 8\pi^2$
	$= -\frac{64}{3}\pi + 4\pi + 8\pi^2$
	$=8\pi^2 - \frac{52}{3}\pi$ unit ³

	$y = -0.358974359(3.8)^2 + 13.22512821$
	= 8.041538466
	= 8.04 (3 sig. fig.)
	Since $x = 3.8$ is within the data range given, and <i>r</i> -value indicates a strong
	negative linear correlation between y and x^2 , the estimate is reliable.
7(a) (i)	Number of ways $=\frac{8!}{2!\ 2!}=10080$
	2 N's 2 A's
7(a)	Number of ways
(ii)	- Number of ways
	81
	$=\frac{6!}{2!2!}-6!$
	= 9360
7(a)	Number of ways
(iii)	$4! (5)_{4!}$
	$=\frac{1}{4}$
	2!2!
7(b)	= 720 Number of wave
(i)	(A)(2)(A)(A)
	$= \binom{4}{3}\binom{5}{2}\binom{4}{2}\binom{4}{2}$
- (3)	= 432
7(b) (ii)	Case 1: 3 trumpet players, 3 saxophone players
(II)	Number of ways = $\binom{4}{3}\binom{4}{3}\binom{7}{3} = 560$
	Case 2: 3 trumpet players, 4 saxophone players
	Number of ways $= \begin{pmatrix} 4 \\ 3 \end{pmatrix} \begin{pmatrix} 4 \\ 4 \end{pmatrix} \begin{pmatrix} 7 \\ 2 \end{pmatrix} = 84$
	Case 3: 4 trumpet players, 3 saxophone players
	Number of ways = $\binom{4}{4}\binom{4}{3}\binom{7}{2} = 84$

8(iv)	$P(A \cup B) = P(A) + P(B) - P(A \cap B)$
	$= 2\left(\frac{40}{100}\right)\left(\frac{15}{100}\right) + \left(\frac{13}{40}\right)^2 - 2\left[\left(\frac{40}{100}\right)\left(\frac{1}{4}\right)\left(\frac{15}{100}\right)\left(\frac{1}{2}\right)\right]$
	$=\frac{3}{3}+\frac{169}{3}-\frac{3}{3}$
	25 1600 200
	$=\frac{337}{1600}$
9	Let μ be the mean distance Kelly can throw her javelin.
(i)	$H_0: \mu = 55$ $H_1: \mu > 55$
	Level of significance: 5% (upper-tailed)
	Under H ₀ , $\overline{X} \sim N\left(55, \frac{\sigma^2}{10}\right)$, where σ is the population standard deviation.
	Test statistic: $T = \frac{\overline{X} - 55}{\left(\frac{s}{\sqrt{10}}\right)} \sim t(9)$
	$\overline{x} = \frac{\sum x}{n} = \frac{569.5}{10} = 56.95$
	$s^{2} = \frac{1}{n-1} \left[\sum x^{2} - \frac{\left(\sum x\right)^{2}}{n} \right]$
	$=\frac{1}{9} \left[32560.75 - \frac{569.5^2}{10} \right]$ 127.725 1703
	$=\frac{1}{9}=\frac{1}{120}$
	p-value = 0.0680407 > 0.05, hence we do not reject H ₀ .
	t -calculated = 1.636884, $t_{critical} = 1.83311$
	There is insufficient evidence at 5% level of significance level to claim that the new training method has improved Kelly's performance.
	The probability of rejecting the claim that the new method has not improved Kelly's performance when it is actually true is 0.05.
	OR

	The probability of rejecting the claim that the Kelly's mean distance is equal
	to 55 metres wrongly is 0.05.
9(ii)	Given $n = 60$ and $\sigma^2 = 6^2$.
	$1 \dots \pi \pi (\pi \pi 36)$
	Under H ₀ , $X \sim N 55$, $\frac{1}{60} $
	Test statistic: $Z = \frac{X - 55}{X - 55} \sim N(0.1)$
	Test statistic. $L = \frac{1}{6}$
	$\left \overline{\sqrt{60}} \right $
	$7 \dots = \frac{x-55}{x-5}$
	~calculated (6)
	$\left(\overline{\sqrt{60}}\right)$
	$4 \pm 50/$ significance level $\pi = -1.644853636$
	At 5% significance level, $z_{critical} = 1.044655020$
	To reject H_0 , we need
	$z_{cal} \ge z_{crit}$
	\overline{x} - 55
	$\frac{x-55}{(-5-)} \ge 1.644853626$
	(√60)
	$\overline{x} \ge 56.27409814$
	$\overline{x} > 56.3$ (3 sig fig.)
	$\lambda \leq 30.5$ (3 Sig. fig.)
10	
10	Let X be the length of time a customer leaves a car in the vehicle park of the
(i)	shopping centre on a weekday.
	$X \sim N(95, 21^2)$
	Required probability
	31
	$ = P(X > 120)^2 \cdot P(80 < X < 112) \cdot \frac{3}{21}$
	2!
	$= (0.11692970104)^{2} \cdot (0.5533679186) \cdot 3$
	- 0.02269786
	= 0.0227 (3 sig. fig.)
10(ii)	Let <i>Y</i> be the length of time a customer leaves a vehicle in the car park of the
	shopping centre on a weekend.
	$Y \sim N(\mu, \sigma^2)$
	Since $P(Y < 120) = 0.5$, $\mu = 120$ minutes

	P(Y > 148) = 0.191
	P(Y < 148) = 0.809
	(148-120)
	$P\left(Z < \frac{1+\sigma}{\sigma}\right) = 0.809$
	$\frac{28}{-0.8742171608}$
	σ σ σ
	$\sigma = 32.02865518$
	$\sigma = 32$ (to nearest minute)
10 (iii)	Let <i>T</i> be the amount of car park charges paid by Mr Teng in the particular week.
	$T = 0.04(X_1 + X_2) + 0.03Y + 2(2) + 5$
	$= 0.04(X_1 + X_2) + 0.03Y + 9$
	$T \sim N(0.04(2)(95) + 0.03(120) + 9, 0.04^{2}(2)(21^{2}) + 0.03^{2}(32^{2}))$
	$T \sim N(20.2, 2.3328)$
	$P(T \le 18) = 0.0748767929$
	= 0.0749 (3 sig. fig.)
10	Let L be the amount of car park charges paid by Miss Low in the particular
(iv)	week.
	$L = 0.04 (X_1 + X_2) + 0.03Y$
	$L \sim N(0.04(2)(95) + 0.03(120), 0.04^{2}(2)(21^{2}) + 0.03^{2}(32^{2}))$
	$L \sim N(11.2, 2.3328)$
	$T - L \sim N(9, 4.6656)$
	$P(T-L \ge 10) = 0.3216954711$
	= 0.322 (3 sig. fig.)

11(a)	Let X denote the random variable for the number of demands per hour for a
(i)	court in this sports hall on a weekend. Then $X \square Po(7.2)$
	P(courts are fully booked on a particular time slot on a Saturday)
	$= P(X \ge 6)$
	$=1-P(X \le 5)$
	= 0.7241025
	~ 0.724 (shown) Note
	$\sim 0.72 + (310 \text{ wit})$
	students must indicate higher degree of accuracy before rounding off to 3
	decimal places.
11 (a) (ii)	Let <i>Y</i> denote the random variable for the number of hours on an entire weekend for which the courts are fully booked. Then $Y \square$ B(30, 0.7241025).
(11)	Since $n = 30$ is large, $np = 21.723 > 5$, $n(1-p) = 8.2769 > 5$, $Y \square N(21.723, 5.9933)$ approximately.
	D(the courts are fully be alread for at least 20
	P(the courts are fully booked for at least 20
	randomly chosen hours on both Saturday and Sunday
	of a particular week)
	$= P(Y \ge 20)$
	= $P(Y \ge 19.5)$ (by Continuity correction)
	= 0.81807
	= 0.818 (to 3 significant figures)
11(b)	By plotting Y_{1} = poissonpdf (21.6, x) in GC and using the "Table" function
	(as below)
	18 .06809 19 .0774
	20 .0836 R4
	22 .08442
	24 .07135
	X=21
	From the GC, most probable value is 21.

11(c)	Let \overline{X} denote the average number of demands for a court between 0700 and 0800 per Sunday for 52 randomly chosen Sundays. Since $n = 52$ is large, by Central Limit Theorem, $\overline{X} \square N\left(7.2, \frac{7.2}{52}\right)$ approx. $P\left(\overline{X} \le 7\right) = 0.2954667$ ≈ 0.295
	Alternative method: $X_1 + X_2 + + X_{52} \square Po(374.4)$ Since $\lambda = 374.4 (> 10)$, $X_1 + X_2 + + X_{52} \square N(374.4, 374.4)$ approx $P(\overline{X} \le 7) = P\left(\frac{X_1 + X_2 + + X_{52}}{52} \le 7\right)$ $= P(X_1 + X_2 + + X_{52} \le 364)$ $= P(X_1 + X_2 + + X_{52} \le 364.5)$ = 0.304450 ≈ 0.304
11(d) (i)	The probability that one of the courts is booked will be affected by the event that another court is booked. Hence the trials do not occur independently (the probability of a court booked is not consistent) and so a binomial model would probably not be valid.
11(d) (ii)	As people have to work during weekdays, the average number of demands will be fewer on the weekdays. Hence the mean on the weekday is different from that on a weekend.