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1 Introduction

he solutions of sqch
d using calculus, 1.¢.
discussed 1n

. ) ) -oximate t
Ir'1 this chapter we would introduce numerical methods t0 z’tpplo.\lm{minc
~ = - . - H 1
dlﬂer-mtml equations, especially for those where a solution cannet be o1y sthods
the differential equation cannot be solved exactly and explicitly using MEHITE

‘ R g ; us s

Chapters 14A and 14B. For example LI x is such a differential equation. Let
dv -

an example to illustrate a simple approximation.

tart with

Suppose the balance ¥ in a bank account is related to time # via the differential equation
dy

Y
dr 3

the mterpretation would then be that interest is compounded at a rate of 1%. However, since [ 1S
continuous, the interest is compounded continuously, instead of at fixed discrete intervals. Hence

to get the balance at ¢, (1), the solution is not y(£)=y, (1+0.1)‘ where y, represents the initial
amount in the bank account. To calculate values y, which are intended to approximate the true

values ¥(7_) where 1, represents the balance at the n™ period, we use the definition of the
1e n™ period,

derivative

001):({) = lim w
Ar=0 At

]

to make an approximation

0.01))n ~ Ynt = n 5
At
Wwhich can be rearranged into y,,, = y, +Ar(0.01 V)

If we are interested in the balance at yearly intervals, set At =1, we obtain

You =¥, +0.01y, =1.01y,,
hence by treating the continuous interest rate as an annual interest rate, we can approximate the
balance in the account at the n" year using y, = y, (1+ 0.1)".

The above illustrates an instance where the solution of a differential equation is approximated by a
numerical approach.

In this chapter, we have the following:
— Lett,yeR, then f(r,y) is a function in two variables such that f ;R xR — R..

(E.g. f(t,y) =t* -y, then f(2,1) =2"_1=3, .. given any pair of real values of  and y, the
function maps it to a real constant)

— Define time steps as a sequence of real numbers such that 7, =¢_ +At, where At isa
constant, known as the step size.

Before we look at the two key numerical methods you will be need to know, let us first explore

how we can use the idea of a slope field to visually have an idea on how the solution curve might
look.
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1.1

Slope Field

Suppose y(x) is a particular solution to the differential equation j—y=f(x,y). Then the
X

tangent at each point of the graph of y(x) has a slope given by the value of % =f(x,y) at

that point. If we systematically evaluate f over a rectangular grid of points in the xy-plane
and draw a mini line segment, known as a ‘slope mark’ at each point of the grid with slope
defined by £ then the resulting diagram consisting of all these slope marks is called a slope

field or a tangent field or a direction field of the differential equation day =f(x,y).

The diagram below shows the slope field diagram for % =2x witha 9 x 9 grid.

w

1.2 Applications of Slope Field

(@)

There are two pieces of qualitative information that can be readily found from the slope field

for a differential equation.

Sketch of solutions.

Since the slope marks in the slope field are in fact tangents to the actual solutions to the
differential equations, the slope field provides a visual appearance or shape of a family of
solution curves of the differential equation. Particular solutions for the differential equation
can be sketched by following the slope marks in such a way that the solution curves are
tangent to each of the slope marks they meet.
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(b) Long Term Behaviour. ’ the differ
In many cases we are Jess interested in the actual solutions to th be use
are in how the solutions behave as X increases. Slope ﬁeld.s e seful
about this long-term behaviour of the solution. This is partt ] 1u ng run.
how a physical qQuantity(y) behaves with respect to time(#) in the long

ential equations as we
d to find information
if one is interested in

2 Euler’s Method

; . ; ich key principle
The approach illustrated in the introduction is an example of Euler’s method wh y

1s the use of a linear approximation for the tangent to the solution curve.

Given an initial value problem

d
'&%= (TaJJ)s () =y,

: tion
We can evaluate f for any given pair of values (t,»), and hence obtain the slope of the .
curve passing through that point. -

Recall from definition, EIZ = lim Ay = lim

y(t+At)—y(t).

dr a0 At a0 At
= -y
For small Az, d_yzy_(iM: £(1,y)=~ y(t+41)-y(¢) .
dt At At .
Hence, given a general point (z,,y,), we can find another point (z,,,,y,.,) using
dy Yorr =¥
= =f(t,,y,)~== E 1)
dr =, Y=y, ( " yn) L1 — 1y (

and repeat this procedure to approximate the

solution curves via a series of linear approximations.
This is illustrated in the diagram below.

h i s
(tn+l ’ yn+l ) es-‘_l_f\-n_‘_e

1

_________________________ - Q,G‘“"i
yacruai _______________________ : “,
. d Ly,
Gradient= —Z == f(tn’yn) i yn+1 Y
ds e i
|
(tu 2 yn ) _______________________________ E -
,I
¢ Y |
trr+l - tn

I
1
)
solution curve %
1

t

t

n+l

In general, we choose a fixed value for A¢ (time step) and set 7,,, =¢, + At . Thus (1) becomes

.yn+l_yn zf b3 ;
TR R L (1,57)

-

or equivalently,

Yun = Yo + AL, 5 3,)}

Chapter 15C: Numerical Differential Equations
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Suppose that the value of ¥, is known or already determined at 1,» we can find the value of y at

,., - Repeating this process, we would be able to obtain an approximation for the value of y for
any desired value of . This is illustrated in the diagram below,

¥y A

(’m—! ’yrHZ )

. dy
Gradient= H_r‘ = (100, Vo )

1=lyat s Y=Y na

dy

(rnﬂ 3 yn+l )
Gradient=—
t

drl,, ., =f (t",y,,) Use (1,,, Y1) to find
(tmd H yn+2 )

(I"’ yﬂ ) Use (In’yn ) to ﬁnd (Irﬁl’yn-&l )

~Y

Example 1
Consider the initial value problem

dy

—=2y-1, JO)=1.
dr

(i) Apply Euler’s method to obtain an approximation for y(1) using step size 0.2.

(ii)  Plot all intermediate approximations on a graph and compare them with the exact solution.

(iii)  Repeat (i) and (ii) with step size At =0.1 instead. Comment on the effects of reducing the
step size.

(iv)  Explain without reference to (ii), whether the answers to (i) would likely be under-
estimates or over-estimates.

Solution

Here f(¢,y) =2y -1, so Euler’s formula will take the form

\A“M = \A“-‘r&” (Tj\hn

()  Beginning with n=0, #,=0, y, =1 and setting Ar=0.2:
we first compute £(r,,»,): § ('fo,‘ﬂob-'-' '*‘-% 'l‘i;lfl C)n ﬂ"’f
then 80-00,7,): gy omear M- § &,9.)50.2 (Diog ™

then using Euler’s formula to compute y,,,: & UsYot Dt Ry @YD= 1.2
Repeating the same procedure for n=1, 2,3 and 4:

Chapter 15C: Numerical Differential Equations
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[ e e— _ fore, similar
Observe that yrr =yn—1 +0‘2(2yn—| _1) iS equiva]ently yn+[ = 1'4})‘" 02 i lhere s Bl e

, used to calculate
to how we compute successive terms in a recurrence relation, G.C. can be
the approximationg quickly.

o G.C. Commands for Example 1
Spes mode to SE B oo e toE
[ﬂ@[{]@@ ‘erc

(A[]] 0123456789

RADIAN [LEAIEY

FUNCTION PARAMETRIC POLAR
JLI{S DOT-THICK THIN DOT-THIN
SEQUENTIAL| SIHUL

REAL [T1'1H

2019 Yeay

THlas "

re~(eiL)

ATN8 HORIZONTAL GRAPH-TABLE
FRACTIONTYPE:EYT] Unsd
ANSHERS:EITR{] DEC FRAC-APPROX
GO TO2NDFORHAT GRAPH:CT] YES
STATDIAGNOSTICS:[I3d ON

STATHIZARDS: [T OFF
SALINT M6?/18/15 8:28AM

m R

nMin, u(n) and u(7min) respective] Plotl Plotz plots
) Y.

B et (| ™

@BB u(r(vMin)é(l} )

Bww(n)=

vinMin)=

w(n)=

w(nMin)=

Copy values from table, BRESSoT,

nocwne

it w0 03 o

3
Il
(]

It is often useful to construct a table for the computation using Euler’s method,

! y 2y-1 | At(2y-1)
0 1.0000 | 0nov

02| |20 |

0.4 | 1.4800—+-1.9600 0.3920

0.6 | 1.8720 | 2.7440 0.5488

0.8 | 2.4208 | 3.8416 0.7683
1.0 | =19 . -

(i)  Solving j—y =2y -1 with initial condition ¥(0) =1, we obtain the solution
f

yz—;-(ezf +1) ()

We can then compute the actual value Yaena USINg (2) and thus, the absolute error given by
| Vacruat = Vapprox | @t €ach step and the percentage error

Chapter 15C: Numerical Differential Equations
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| ynctual - yapprox | % 100%
yaclua|
of each approximate value.

Wl e | 160 | AF0) | v | . BT | Percentage

[ ynctua] N yn | crror (%)
0 | 1.0000 | 1.0000 02000 | ¥ L00]  (.0000 .
0.2 [ 1.2000 | 1.4000 0.2800 | 49| -t6%e 3. @50
0.4 | 1.4800 | 1.9600 03920 | 1.6128 0.1328 8.2324
0.6 | 1.8720 | 2.7440 0.5488 | 2.1601 0.2881 13.3357
0.8 | 2.4208 | 3.8416 0.7683 | 2.9765 0.5557 18.6700
1.0 | 3.1891 . . L 0% [.0054 23.9(J§

7 )

Plotting the intermediate approximations and the exact solution on the same axes:
AN L AU DHREAURRAD T ARR IR Y

\.h.A'L] hh,—‘i{ .LL.L..‘;!.L

solution curve

approximations

From the plot above, we observe that the error | y, ., —», | increases as n increases, i.e. as
m gets further away from fo.

(iii) Repeating with step size At = 0.1, we obtain the table below,

: : . Error Percentage

n yn f(f”,_)”) At f(fn,y") J actual | ymm[ "J",, | erTor (%)
0 [ 1.0000 | 1.0000 0.100Q | 1.0000 0.0000 0.0000
0.1 I.loon| 1,200 | Oixe 0985
02| (A0qqg (4%w | OB~ 2 IR
0.3 ] 1.3640 | 1.7280 0.1728 1.4111 0.0471 3.3350
0.4 | 1.5368 | 2.0736 0.2074 1.6128 0.0760 4.7106
0.5 ] 1.7442 | 2.4883 0.2488 1.8591 0.1150 6.1846
0.6 | 1.9930 | 2.9860 0.2986 2.1601 0.1671 7.7343
0.7 | 2.2916 | 3.5832 0.3583 2.5276 0.2360 9.3373
0.8 | 2.6499 | 4.2998 0.4300 2.9765 0.3266 10.9728
0.9 | 3.0799 | 5.1598 0.5160 3.5248 0.4449 12.6229
1.0 | 3.5959 - - 4.1945 0.5987 14.2724
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- HURHALYFCURTRALTOR LxLﬂlLl;iilE]ﬁ HES i

MRCANY Pl e, R

solution curve

VSlep sze 37 ey
(iv)  From the table in (i), we observe that gmcﬂ,j ‘Bé.{/l X Lefg oS ’t /[\

hero  fho OPP 0 ol Loy b9 Cach 1 gho

ote: In general, if a 1s increasing or decreasmg in the interval investigated, i.e. E> 0 or
d’y

dx’

respectively.

N

<0 respectively, then the approximation obtained would be under- and over-estimates

Nature of First Derivative Increasing Decreasing
— —_— ——— D
Graph yA ya
I‘J
Z x
Nature of Estimate Under-estimate Over-estimate

The reality however is far from this. ..

Whether an estimate is an under-estimate or over-estimate very much depends on the step size.

Consider the following example:

1 ; 5 il
A particular solution of the differential equation Ex)i =2x-3(y-x*) has y=0 when x=0. Use

the Euler method with step size 1 to estimate il x=2

Constructing a table for computation using Euler method with Ax=1:

x y 2x=3(y=x") | Ax(2x-3(y-x))

0 0 LY O
1 A & ]
2 5 - -

Chapter 15C: Numerical Differential Equations
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Therefore, at v =

- 2, the value of y is 5
estimate.

5. So the increasing gradient suggests this is an under-

However, it is easy to check the exact solution to the above initial value problem is y = x2. But
this means the actual value when x=

HAPPENED?" 2 is 4. Which means 5 is an over-estimate. WHAT HAS
h 7

i

|

- f

S S NNLA B2 VXN T S S
,

i -
S . 1 L () 2 ' P

! )
BAY o B9 ™

Lop- ¢ v

— /‘

i
!

|7 i EN RN
1/ ! BN
i i 1

To understand what has happened, let us look at the slope field and the solution curve.

First notice that no matter the choice of the step size, the first approximation is always 0, since the
gradient of the slope field at the origin is 0.

Then as x increases (when y = 0), we see that the gradient of the slope field increases, so it should

not be surprising that for a sufficiently large step size, the subsequent estimate will be an over-
estimate, instead of an under-estimate.

For different differential equations, the step-size required to ensure that our estimates are as we
expect, over/under-estimates according to the second derivative, is clearly going to be different.

2 . . d 5
To further illustrate this, consider the differential equation ézl\'—n( y—x") that has y=0

when x=0. Let & be the step size. As discussed above, -Euler’s method gives y(h) = 0.
Calculating y(2h), we have y(2h) = y(h)+h(2h+nh*) = h*(2+nh). The exact solution is again
y=x’. So comparing against the actual value of (2k) =4k, we see that
W (2+nh)> 4K ©nh>2 & n> 2. What this means is that given any step size 4, it suffices to

choose an # satisfying the inequality above for the Euler Method to produce an overestimate of
the actual value at y(2h).

Chapter 15C: Numerical Differential Equations
d Page 9 of 21



9 ) -
\
Raffles Institution H2 Further Mathematics 2019 Yeary
So whenever this question is posed at the A-level, what you should do is as we have shown you 1
T Discuss whether gx}i is increasing/decreasing at the 2/3 points you are using the

- -estimate.
Euler method and conclude that you have an under-estimate/over-€s

If you want to feel safer, o

LS :%\‘

> 2 n¥eny, .
2) Show that C]—y>0 or ¥ <0 for all x, y and concliidé again you have an
dx? dx?

N
under-estimate/over-estimate.

If you want to feel even safer,
3) Calculate the exact value and make the 100% correct conclusion.
To show off without wasting time doing 3),

4) Say that whether it is an under/over-estimate depends on the step size.

Example 2 [9824/2009/1(i)]
4 5
A particular solution of the differential equation % = 22—1 has y=1 when x=1.

Use the Euler method with step size 1 to estimate ¥ at x=3. State with a reason whether this
value of y is an under-estimate or an over-estimate.

Solution

Constructing a table for computation using Euler method with Ax=1:

‘ 4050 quait
x & Ix*+y At(Bx +y ]

: 2xy { 2xy
1 1 o 2
2 3 438 43S
3 .43 5
Therefore, at x =3, the value of y is 7.75.
" 3x* + )7

5 . d : : .
The value is an under-estimate as Ey seems to be increasing as x increases.

2xy

Chapter 15C: Numerical Differential Equations
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3 Improved Euler’s Method
The Euler formula is based on the assumption that the gradient of the line segment joining any
‘ i _ . dy
two successive points, (tn’},r) and (;r_”}:r_-l ), on the graph of y is equal to the value of d— at
1 \ " 1
(t,,, y,) . To improve the approximation, one may instead assume that the gradient of the line

: dy
segment is equal to the average of the values of d_}t at (1,.y,)and (1,.,.5,.,):

L 1 3
}_HQE_}.}L =E[f(tn9.}’n) + f(t""l’}"-"l ).] (J)

Gradient

=Lt + £t 3)]

f

However, the formula cannot be used directly to calculate y_, because y

< n+l < r+l

is required to
evaluate f(7,.,,,.,) on the right-hand side.

To overcome this problem, y, ., on the right-hand side is replaced by a first estimate, denoted by
#,.,, obtained using Euler’s method,

.)-)n+l J”n
_f y
t (tn:.)n)a

and this estimate is substituted into (3):

1

Yot = Vu _ 1 t y
van LIS AL { (0]

or equivalently

/’) E-ulEr

f(f",}’(fn))-i- f(tni-l?j’nﬂ)
: 2

ym'-l = yn + Ar

Chapter 15C: Numerical Differential Equations
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_ solution curve
-
e
e .
L R P Y - o~ Gradient
_____________________________ ’,”l
s H = fg +1? } nH
Gradient :-—[f‘ (7,5, +f(l,,+1,}~’,,q):| 4% ':
- o '
- )
e ) Gradient=1(1,.,)
R e :
o )
i < :
1 T ;
. : =
fn tml !

Therefore, the Im roved Euler’s metho

d (also known as the Heun formula) consists of two steps:
Step 1: Apply Euler’s method to find

PV =Y, 0L (2, )

y+Atmi(”_))i£&tl’_yn+Q
2

Step 2: Find P

n+1

Chapter 15C: Numerical Differential Equations
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Example 3 (Continuation of Example 1)

Consider the initial value problem
d
Lo2y-1,  y0)=1.
dt

Apply the Improved Euler’s method to obtain an approximation for y(l) using step Ar=0.1.
Compare with results obtained using Euler’s method.

Solution ~ :
With Ar=0.1,  Dnt( " 3n+’5t‘<93n*‘) (25)
3o, =Y.+ At MJ
B = ) ( -

Beginning with 7, =0, y, =1, Ar=0.1, the first two approximate values are
7 =1.0000+(0.1)-(2(1.0000)~1) = 1.1,

3\:\.0000 ta 1, l( 2(!.000@-’ '4'(3—_5-’1:))1:"“06

Y= L1000 + 0.1y - (2L 1A -1) = | 2324
Y. = 11100 £0.1 ((1(\.l|00)—l} + (2 (1.9370] —ﬂ)

R

The table below shows the approximate values obtained in all ten steps.

=\ R4y L

fn .V,, f(t”’y") 5}1”1 f(r”'”’j;"“) At' f(tn’yn)+f(rn+l’.j~)rr+l)

= &l = B 2
0.0 | 1.0000 | 1.0000 |1.1000| 1.2000 0.1100
0.111.1100 | 12200 [1.2320| 1.4640 0.1342
0212442 | 1.4884 |1.3930| 1.7861 0.1637
0314079 | 1.8158 [1.5895| 2.1790 0.1997
0.4]1.6077| 22153 [1.8292| 2.6584 0.2437
0.5|1.8514| 27027 [2.1216| 3.2432 0.2973
0.6 21487 | 32973 |2.4784| 3.9568 0.3627
07125114 | 4.0227 |29136| 4.8273 0.4425
0.812.9539 | 4.9077 |3.4446| 5.8892 0.5398
0.9 [3.4937 | 5.9874 |4.0924| 7.1849 0.6586
1.0 | 4.1523 . » » -

Chapter 15C: Numerical Differential Equations
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Comparing the two methods,

|

ORHEEOATE AUTIREACRRACTARARFERE | |
Ll aaat ™ g ; =

solution curve

 » I]npro\red Euler

Euler
Improved Error for Percentage Error for T
; Bujcs Improved error of Fuler Biler ‘ bl
Factual : Euler Improved ¥ L error of Euler
£ e -, Euler Ao~
1.0000 | 1.0000 0.0000 0.00 1.0000 0.0000 0.00
1.1107 | 1.1100 0.0007 0.06 1.1000 0.0107 0.96
1.2459 | 12442 0.0017 0.14 1.2200 0.0259 2.08
1.4111 1.4079 0.0032 0.23 1.3640 0.0471 4.71
1.6128 1.6076 0.0052 0.32 1.5368 0.0760 4.71
1.859] 1.8514 0.0077 0.41 1.7442 0.1149 6.18
_2.1601 | 2.1487 0.0114 0.53 1.9930 0.1671 1.74
25776 2.5114 0.0162 0.64 2.2916 0.2360 9.34
29765 | 2.9539 0.0226 0.76 2.6499 0.3266 10.97
3.5248 | 3.4937 0.0311 0.88 3.0799 0.4449 12.62
4.1945 | 4.1523 0.0422 1.01 3.5959 0.5986 14.27

From the above plot and table, the

that of the Euler’s method.

percentage error by the improved Euler’s method is superior to

Example 4 [9824/2013/7(ii)]

. d
A solution of the differential equation _d% =y~ has p=2 &t x =0,

Copy and complete the table showing the use of the im

estimate y at x =1.

proved Euler method with step size 0.5 to

2.625+3.432 £3 03,5

= Ay
y—x =
% y y pe
9 5 3 2+25
; 2
0.5 3.125 2.625 4.438 3
1 |4 64015

Chapter 15C: Numerical Differential Equations
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Solution

= Ay
% Yy y—-Xx y Ax
2+2.5
0 2 2 3 >
F. 615|423 428

0.5 3.125 2.625 4.438 —

1[40 45

3 Miscellaneous Examples

Example 5
Consider the initial value problem
t

Give the approximationsat t=1,r=2,t=3,t=4,and t=5.

Use step size Ar=0.1, At=0.05, Ar=0.01, Ar=0.005, and Ar=0.001 for the approximations
using Euler’s method.

How does changing the values of Ar affect the accuracy of the approximations?

Solution

Here f(t,y)=2-¢™" -2y, so Euler’s formula takes the foth:.
%hfl:jn+& (:) —@ ‘D‘&)

With the integrating factor e, the differential equation can be solved to obtain

y=1+%e‘4’—-le‘2'

Below are two tables, one gives approximations to the solution and the other gives the errors for
each approximation.

Approximate y_

! Yactual Az =(.1 At =0.05 At =0.01 At =0.005 | Ar =0.001
1 0.9414902 | 0.9313244 | 09364698 | 0.9404994 | 0.9409957 | 0.9413914
2 0.9910099 | 0.9913681 | 0.9911126 | 0.9910193 | 0.9910139 | 0.9910106
3 0.9987637 | 0.9990501 | 0.9988982 | 0.9987890 | 0.9987763 | 0.9987662
4 0.9998323 | 0.9998976 | 0.9998657 | 0.9998390 | 0.9998357 | 0.9998330
S 0.9999773 | 0.9999890 | 0.9999837 | 0.9999786 | 0.9999780 | 0.9999774

Chapter 15C: Numerical Differential Equations
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—5 N
\\
Percentage EHOSOTD mm

‘ Ar=01 | AM=005 | A= ~0.010500 |
1 1.0800 | 053000 | 0.10500 | 0.053000 —E,’—g—é—g%%‘
5 0.0360 0.01000 | 0.00094 | 0.000410 e
3 0.0290 0.01300 0.00250 0.001300 _i__oo_ﬁ——
4 0.0065 0.0033 0.00067 | 0.000340 ’—@’O—Tﬁr
5 0.0012 0.00064 0.00013 0.000068 | 0.000014 |

We observe that decreasin

; c&g At improves i&i:curacy of the appﬁrati% .;F? 10
" reral | decreas, Size ' qupov
%M@; zﬁr%%a;[‘la%qua‘gw'@t-

J

Remarks:

® Astincreases, the approximation actually tends to get better. This is not the case completely

as we can see that in all but the first case, the error at =3 is worse than the error at 7 =2, but

after that point, it only gets better. This should not be expected in general. In this case, this is
more a function of the shape of the solution.

approximations for Ar=0.] .
1.0200 -
1.0000 \
0.9800 I
0.9600 -
0.9400 '—1, £
0.9200 -;—"-\ f,:'—’.,.
0.9000 —+ 7
0.8800 A *
0.8600 ——
0.8400 =
0.8200 - ' ' ;

2 3 4

Below is a graph of the solution as well as the

. St PP
P e v T e YD s e i e e S e D
o i
P
2’y l;

-

<

—Exact ¢ Euler

e The approximation is worst where the function is changing rapidly. This should not be too
surprising. Recall that we are using tangent lines to get the approximations and so the value of
the tangent line at a given ¢ will often be significantly different than the function due to the
rapidly changing function at that point.

° In this case, because the function ends up fairly flat as ¢ increases, the tangents start looking

like the function itself and so the approximations are very accurate. This will not always be the
case of course.
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Example 6 [JJC/2012/4(modified)]

A solution of the differential equation
dy 2
—=(1+yp Jtanx,
dx ( ’ )

where x is in radians, has y=1at x=0.

(i) Use the Euler method with step size 0.5 to estimate y at x=1.

(ii) Copy and complete the table showing the use of the improved Euler method with step

size 0.5 to estimate y at x = 1.

» y (1 +y1)tan . y %
0 | 0 I 0.5463
0.5 1.2732 1.4318

1

(iii)  State, with a reason, which of these two estimates for y at x = 1 is likely to be more

accurate.

(iv)  Explain whether these estimates are likely to be over-estimates or under-estimates.

Solution
@ Doz V5 (0500 4an0 J =
D=\ t(05) [t tanos J=( 46T
The estimate of y at x =1 is 1.55 (to 3 s.f).

In table form:

y (1+y2)tanx Ax[(l-i—yl)tanx}
1 0 O
05 | L0926 | 0.5467
1 1.5463

The estimate of y atx =1 is 1.55 (to 3 s.f.).

405X
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) Whenx=os, SEI.P{LZ + U).S)‘ (W

_ 4 g -
B LR Tkl B %

Whenx=1, Y =|-D\43’&+(0_5)C{'515}50) ‘{VV %M

Filling up the table:

—

9

; y Ay
x ) 1+ y° Jtan x .
) (1+ y*)tan y e

0 ] 0 1 0.5463

05| 12732 1.4318 (9% 9 4—,5%5-6
1| 3564

[

(i) The improved Euler estimate, 3.56
estimate, 1.55.

Cach 'm{@wnﬁke 15 mpmveoQ Tuler Methaf makds e
Predictn dl\KS\—_ ba azr on A orrect Hhie pred et to e

Qa Px—\c\m‘\f. .- for Semp g+exp S\ze, the thmvee{ éuu’-ﬂ

(iv)  From the tables, we observe that mhod i QCCUm‘Fe

183 Seom g be /‘\ag t']\/ Oﬁ;mﬂm% LY
1 0 A
(t

w*‘a_ 0 be o
Example 7 [R1/2014/7 (modified)] _ W\QJLQ/E/WWJ_@,

A solution to the differential equation J

(»-1)

(to 3 s.£), is likely to be more accurate than the Euler

& e
I

has y=-15at x=0.
: 2 12
)] Show that the exact value of y at x =1 is =2

(i)  Use the Euler method with step size 0.5 to estimate y at x =1.

(iii)  Use a sketch to explain why the Euler method with step size chosen in (ii) does not
provide a good approximation to the exact solution.
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(iv)  Co . :
0 Spy anq complete the table showing the use of the improved Euler method with step s1z¢€
D to esumatey at x=1, '
= I =,
: < y
- y (»-1) Y Ax
T .
0 L5 6.25 1.625 3.3203
| Sl e
|—
0.5 0.16015 0.70535
E—
I A
1 s
| At | LY

method is preferred to using smaller step sizes 1n

(v)  Give a reason why the Improved Euler
the Euler Method.

Solution

. dy 2 1
(l) —_= y—l jj -,d_y: dx
ltan g oL

— =
y-1
1 2
When x=0, y=-15:c=-—<=¢
B 5 =T33 5
PP I
x+2 5x+2
5
When x=1:y=1—%=% (shown)

(ii) Usin%jt%%}?%lﬁrﬁi\‘/lﬁhcé%)-’.oj R [0);)()1&? @;2 105(6.25)=].6%5
4 905)0300 " X

Alternative Method |4 §p é C

B
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NOOH 7 4_-_-7-.-_'7_-.__-'_:‘
*_-——————_.,:l: HAYFEnA TR READE RADXANRHPRMES T LL&Q IEEUARMAUTORREAL RADTANEHESECT |

P{o‘ti- iy RN "_‘_:_____'____;“_____._‘,__;J_:n m 11;.1:f! -:__’:‘Li‘-;:-_. i e i SRS S R

! T8 n_luln)

.Min=p Y| s

R i L AN 1 A
n .u(n)E(l)-Ha.S(u(n—l)-—l)‘zl.;,ﬁ 31568
-------------------------------------- q Z:BZSE

My gy : |

o sl 10,59
.T’(v(am%nh : icoz

e e 9 1,28BE6

w(nMin)= = e

n=2

(iii) Plotting y=1—

5
Y and the tangent at y = 0:

/A sandon e sketct,
ERARRTY W%w

wrve o slezp , which redliy
(n the ‘Er}l- aﬁbm}c-ﬁ ho

ertone o
(i)
x y (y-1) > =
0 -1.5 6.25 1.625 3.3203
os | was | o (0BG 0ATIE
| 0.39582

ur@? -%Kﬂhﬂ%‘r
Q ul[,gll_, ‘{- '
) ’”19 Q@QDQ‘J” hc&&gmq’_' - ggfwc-:od ,i(«a uM'\& Jhe

¢zs B
lrvvfﬂi\f*‘i’JZ EUM
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