1		Height = $\frac{45\sqrt{5} - 38\sqrt{7}}{6 - \sqrt{35}} \times \frac{6 + \sqrt{35}}{6 + \sqrt{35}}$		
		$= \frac{270\sqrt{5} + 45\sqrt{175} - 228\sqrt{7} - 38\sqrt{245}}{1}$		
		$= 270\sqrt{5} + 225\sqrt{7} - 228\sqrt{7} - 266\sqrt{5}$		
		$=4\sqrt{5}-3\sqrt{7}$	 	
2	(a)	$f(x) = x^{3} - (2h+1)x^{2} - (k-2h)x + k$	 	
		$f(1) = (1)^{3} - (2h+1)(1)^{2} - (k-2h)(1) + k$	 	
		1 - 2h - 1 - k + 2h + k = 0 (shown)	 	
		By factor theorem, $x-1$ is a factor of $f(x)$	 	
	(b)	$x^{3} - (2h+1)x^{2} - (k-2h)x + k = (x-1)(x^{2} - 2hx - k)$	 	
		$f(x) = (x-1)(x^2 - 2hx - k)$	 	
		Since $f(x)$ has three real roots when $f(x) = 0$,		
		$x^2 - 2hx - k = 0$ has two real roots.	 	
		$b^2 - 4ac \ge 0$	 	
		$(-2h)^2 - 4(1)(-k) \ge 0$	 	
		$4h^2 + 4k \ge 0$	 	
		$h^2 + k \ge 0$	 	
2	(2)			
3	(a)	$T = 30^{\circ}\mathrm{C}$	 	
	(b)	$1000 - 2020 - 2000 e^{-k(1.5)}$		
		$2000 e^{-k(1.5)} - 1020$		
		$2000e^{-1} = 1030$		
		k = 0.442392	 	
		$1300 = 2030 - 2000e^{-0.442392t}$		
		$\frac{2000e^{-0.442392t}}{720} = 730$	 	
		$\ln e^{-0.442392t} = \ln \frac{730}{2000}$		
		t = 2.28h		
	(c)	y = 2030	 	

		5 "() 18	
4	(a)	$1^{-1}(x) = \frac{1}{(1-2x)^3}$	
		$18(1-2x)^{-2}$	
		$f'(x) = \frac{1}{-2 \times -2} + c_1$	
		$9(1-2x)^{-2}$	
		$=\frac{1}{2}+c_{1}$	
		2f'(-1) = 1	
		$2\left(\frac{9}{2(1-2(-1))^{2}}+c_{1}\right)=1$	
		$\frac{1}{2} + c_1 = \frac{1}{2}$	
		<i>c</i> ₁ = 0	
		f'(x) = 9	
		$1^{(x)} = \frac{1}{2(1-2x)^2}$	
		f(x) = 9	
		$\Gamma(x) = \frac{1}{4(1-2x)} + C_2$	
		Sub (1,0)	
		$0 = \frac{9}{4(1-2(1))} + c_2$	
		$c_2 = \frac{9}{4}$	
	 	$y = \frac{9}{4(1-2x)} + \frac{9}{4}$	
5	(a)	$f'(x) = \frac{(p-x)[2(x+2)(1)] - (x+2)^2(-1)}{(p-x)^2}$	
		$2(n-r)(r+2)+(r+2)^2$	
		$=\frac{2(p-x)(x+2) + (x+2)}{(p-x)^2}$	
		$\frac{(p-x)}{(x+2)(2n+2-x)}$	
		$=\frac{(x+2)(2p+2-x)}{(p-x)^2}$	
	(h)	$F_{\text{con}} f(x) \text{ is an improve in a function } f'(x) > 0$	
		(x+2)(2p+2-x) > 0	

		$-x^{2} + 2px + 4p + 4 > 0$	
	 	$x^2 - 2px - 4p - 4 < 0$ (1)	
		(x+2)(x-8) < 0	
		$x^2 - 6x - 16 < 0 - (2)$	
		Comparing (1) & (2)	
		-2p = -6	
		p=3	
		Alternative method	
		Comparing this with $(x+2)(2p+2-x) > 0$ in (a),	
		(x+2)(x-8) < 0	
		(x+2)(8-x) > 0	
		2p + 2 = 8	
		<i>p</i> = 3	
	(c)	$\frac{\left(x+2\right)^2}{3-x} = 0 \Longrightarrow x = -2$	
		$f'(x) = \frac{(-2+2)(2(4)+2+2)}{(3+2)^2}$	
		(5+2) = 0 (gradient of tangent)	
		Gradient of normal is undefined (vertical line)	
		\therefore Eqn of normal $x = -2$	
6	(a)	$5\sin^2 A - 3\cos^2 A = 7\sin 2A$	
		$5\sin^2 A - 3\cos^2 A = 7(2\sin A\cos A)$	
		$5\sin^2 A - 14\sin A\cos A - 3\cos^2 A = 0$	
		$(5\sin x + \cos x)(\sin x - 3\cos x) = 0$	
		$\sin A = 1$ $\sin A$	
		$\frac{1}{\cos A} = -\frac{1}{5}$ or $\frac{1}{\cos A} = 3$	
		$\tan A = -\frac{1}{5}$ (reject, A is acute) or $\tan A = 3$ (shown)	
	(b)	$\cos(60^{\mathbb{N}} + A) = \cos 60^{\mathbb{N}} \cos A - \sin 60^{\mathbb{N}} \sin A$	
		$= \left(\frac{1}{2}\right) \left(\frac{1}{\sqrt{10}}\right) - \left(\frac{\sqrt{3}}{2}\right) \left(\frac{3}{\sqrt{10}}\right)$	

Anglo-Chinese School (Barker Road)

 $=\frac{1-3\sqrt{3}}{2\sqrt{10}}$ From (b), $\cos(60^{\mathbb{N}} + A)$ is a negative ratio. So $60^{\mathbb{E}} + A$ lies in the 2nd or 4th quadrant. (c) Both $60^{\mathbb{Z}}$ and A are both acute, $60^{\mathbb{Z}} + A$ cannot exceed $180^{\mathbb{Z}}$. Thus $60^{\mathbb{Z}} + A$ lies in the 2nd quadrant and is obtuse. $y = (3x-1)\left(\sqrt{6x+1}\right)$ 7 (a) $\frac{dy}{dx} = 3\left(\sqrt{6x+1}\right) + \frac{1}{2}\left(3x-1\right)\left(6x+1\right)^{-\frac{1}{2}}(6)$ $= \frac{18x+3+9x-3}{\sqrt{6x+1}}$ $= \frac{27x}{\sqrt{6x+1}}$ (b) $\int_{0}^{4} \frac{9x-3}{\sqrt{6x+1}} \, \mathrm{d}x$ $=\frac{1}{3}\int_{0}^{4}\frac{27x}{\sqrt{6x+1}}\,\mathrm{d}x-\int_{0}^{4}\frac{3}{\sqrt{6x+1}}\,\mathrm{d}x$ $=\frac{1}{3}\left[\left(3x-1\right)\sqrt{6x+1}\right]_{0}^{4}-3\left[\frac{\left(6x+1\right)^{\frac{1}{2}}}{6\times\frac{1}{2}}\right]^{4}$ $=\frac{1}{3}\left(11\sqrt{25}+\sqrt{1}\right)-\left(\sqrt{25}-\sqrt{1}\right)$ $=\frac{44}{3}$ or 16.7 (3s.f) (a) $T_3 = {n \choose 2} (2x)^{n-2} \left(-\frac{3}{x}\right)^2$ $= {n \choose 2} (2)^{n-2} (x)^{n-2} (-3)^2 (x^{-1})^2$ 8 $\frac{n(n-1)}{2}(2)^{n-2}(-3)^2 = \frac{270}{8}(2^n)$ $\frac{n(n-1)}{2}(2)^{-2}(-3)^2 = \frac{270}{8}$

	(y-9)(y+2) = 0
	y = -2 or $y = 9$
	(reject)
	7 ^{<i>x</i>} = 9
	$x = \log_7 9$
	<i>a</i> = 7, <i>b</i> = 9
(b)	$-3x^2 + qx - 8 < 0$
	$b^2 - 4ac < 0$
	$q^2 - 4(-3)(-8) < 0$

		$q^2 - 96 < 0$			
		$(q - \sqrt{96})(q + \sqrt{96}) < 0$	M1		
		$-\sqrt{96} < q < \sqrt{96}$			
		-9.798 < q < 9.798			
		Largest value of the integer $q = 9$	A1		
11	(a)	DA = GC + x		5]	5]
		$x = 26\cos\theta$			
		$GC = 13\sin\theta$			
		$AD = 13\sin\theta + 26\cos\theta$			
		$T = 11 + 13 + 26 + 26\cos\theta + 13\sin\theta$			
		$T = 50 + 26\cos\theta + 13\sin\theta$			
	(b)	$\sqrt{26^2 + 13^2}$			
		$=\sqrt{845}$ or $13\sqrt{5}$			
		$\tan^{-1}\frac{13}{26}$			
		$T = \frac{50 + 13\sqrt{5}\cos(\theta - 26.6^\circ)}{100}$			
	·····	10 5			
	(c)	$Max T = 50 + \frac{13\sqrt{5}}{2}$			
		= -19.1 (3s.t) This is not possible as the maximum distance of T is			
		79.1 m.			

12	(a)	<i>a</i> + 4
	(b)	centre = $(a, a+4)$
		$\sqrt{\left(a-8\right)^2 + \left(a+4-13\right)^2} = a$
		$(a-8)^2 + (a-9)^2 = a$
		$a^2 - 16a + 64 + a^2 - 18a + 81 = a^2$
		$a^2 - 34a + 145 = 0$
		a = 29 (rejected) or $a = 5$
		centre = $(5,9)$
		$(x-5)^2 + (y-9)^2 = 25$
		12.0.4
	(c)	Gradient of radius = $\frac{13-9}{8-5} = \frac{4}{3}$
	+	3
		Gradient of line $L = \overline{4}$
		Equation of line L: $y = -\frac{3}{4}x + c$
	+	$13 = -\frac{3}{4}(8) + c$
		<i>c</i> = 19
		$y = -\frac{3}{4}x + 19$
13	(a)	$\frac{4x^3 + 2x^2 - 5}{x^2(2x - 1)} = 2 + \frac{4x^2 - 5}{x^2(2x - 1)}$
		$\frac{4x^2-5}{x^2(2x-1)} - \frac{A}{x} + \frac{B}{x^2} + \frac{C}{2x-1}$
		$\frac{1}{4x^2 - 5} = A(x)(2x-1) + B(2x-1) + Cx^2$
	 	$\mathbf{L}_{\text{off}} \mathbf{x} = 0$
		-5 = B(-1)
		Let $x = \frac{1}{2}$

	$-4 = \frac{1}{4}C$		
	<i>C</i> = –16		
	Let $x = 1$		
	-1 = A + 5 - 16		
	-1 = A + 5 - 16		
	<i>A</i> = 10		
	$\frac{4x^3 + 2x^2 - 5}{x^2(2x - 1)} = 2 + \frac{10}{x} + \frac{5}{x^2} - \frac{16}{2x - 1}$		
(b)	$\int \frac{4x^3 + 2x^2 - 5}{x^2 (2x - 1)} \mathrm{d}x$		
	$= \int 2 + \frac{10}{x} + \frac{5}{x^2} - \frac{16}{2x - 1} dx$		
	$= \frac{2x+10\ln x - \frac{5}{x} - 8\ln(2x-1) + c}{x}$		