Can	Candidate Index Number								

Anglo - Chinese School (Independent)

FINAL EXAMINATIONS 2014 YEAR 3 INTEGRATED PROGRAMME CORE MATHEMATICS PAPER 1

Friday 3rd OCTOBER 2014 1 h 30 min

Additional Material Graph Paper (1 sheet)

INSTRUCTIONS TO CANDIDATES

- Write your index number in the boxes above.
- Do not open this examination paper until instructed to do so.
- You are not permitted access to any calculator for this paper.
- Answer all questions in the spaces provided.
- Unless otherwise stated in the question, all numerical answers must be given exactly or correct to three significant figures.
- The maximum mark for this paper is 80.

For Examiner's Use

This paper consists of 13 printed pages.

[Turn over

Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are therefore advised to show all working.

Answer all the questions in the spaces provided.

1	[Maximum mark: 5]	
	[Maximum mark: 5] (a) Evaluate $2 - \frac{3}{5 - \frac{3}{5 - \frac{4}{5}}}$.	
	(b) Factorise $25 - \frac{x^2}{9}$ completely.	marks] marks]
		• • • • • • •

.....

2 [Maximum mark: 4]

Which of the following is the graph of

(a) y = -3 + 4x

[1 mark]

(b) $y = \frac{2}{x} - \frac{2}{x^2}$

[2 marks]

(c) $y = -x^2 + 1$

[1 mark]

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Answer:

- (a) Figure _____
- (b) Figure _____
- (c) Figure _____

3	[Maximum mark: 8]	
J	[Maximum mark. 6]	
	(a) Simplify $\frac{20(p^{-2}q^3)^6}{2(pq^{-2})^2} \div \sqrt{\frac{p^3q^4}{pq^2}}$.	
		[4 marks]
	(b) If $\log_2(\log_x 256) = \ln(e^7) - \left(\frac{1}{\log_9 3}\right)^2$, find the value of x .	
		[4 marks]

.....

[Max	simum mark: 7]
(a)	Given that $\sqrt{\frac{ax+by}{3x-4y}} = \frac{a}{b}$, express y in terms of a, b and x.
(b)	Simplify $\left(\frac{2}{3+\sqrt{7}}-3\right)^2$.
	[3 marks]
•••••	
•••••	

5	[Maximum mark: 10]										
	(a)	Solve $2\log_5 y - \log_{125} y = \log_2 32$.	<i>.</i>								
	(b)	Solve the following simultaneous equations	marks]								
		$4^{x-4} \div 32^y = 16^{\frac{1}{x}}$									
		$7^x \times \sqrt{7^y} = 5^{\log_3 1}$									
		[6	marks]								
	•••••		•••••								
	•••••										
	•••••										
	•••••										
	•••••										
	• • • • • • •										
	•••••										
	• • • • • • •										
	•••••										

6	[Max	[Maximum mark: 7]									
	Give	en that $y = x^2 + 2x + 3$.									
	(a)	Express y in the form $y = (x+h)^2 + k$, where h and k are const	ants.								
	(b)	Hence, sketch the graph of $y = x^2 + 2x + 3$, clearly labelling the content the x and y intercepts and turning points, if any.	[2 marks]								
		the x and y intercepts and turning points, it any.	[3 marks]								
	(c)	Given that $w = \frac{12}{y}$, calculate the largest possible value of w.									
		·	[2 marks]								
	•••••										
	•••••										

7 [Maximum mark: 6]

Given that $\sin \theta = \sin 148^{\circ}$ and $\tan \beta = -\tan 52^{\circ}$.

(a) State an acute angle θ and an obtuse angle β .

[2 marks]

(b) Hence, calculate $\frac{3\cos\left(\frac{\beta}{\theta}\right)}{2\sin\left(\beta+22^{\circ}\right)}$, using as much information given in the table below as it is necessary.

	sin	cos	tan
176°	0.0698	-0.9976	-0.0699
30°	0.5000	0.8660	0.5774

[4 marks]

3	[Max	[Maximum mark: 10]										
	The roots of the equation $kx^2 + 4x - 5 = 0$, where k is an integer, are α and (a) Write down the value of $\alpha + \beta$ and $\alpha\beta$ in terms of k .											
	(b)	Given that $\alpha^2 + \beta^2 = 9$, calculate the value of k .	[2 marks									
	(b) (c)	Find the quadratic equation in x whose roots are $\frac{2}{\alpha+3}$ and $\frac{2}{\beta+3}$.	[3 marks]									
	· · /	$\alpha+3$ $\beta+3$	[5 marks]									

Fino	d the val	ue(s) of	the co	nstan	t <i>k</i> , g	iven	that tl	ne qua	adratic	equa	tion	
4kx	^2+10kx	+15 = 4	x^2-5h	k has	2 real	and	equal	roots				
												[5 ma
		• • • • • • • • • • • • • • • • • • • •										
		• • • • • • • • • • • • • • • • • • • •	• • • • • • •									
		• • • • • • • • • • • • • • • • • • • •										
		• • • • • • • • • • • • • • • • • • • •										
			• • • • • • •									
			• • • • • • •									
		• • • • • • • • • • • • • • • • • • • •										
		• • • • • • • • • • • • • • • • • • • •	• • • • • • •									
		• • • • • • • • • • • • • • • • • • • •	• • • • • • •									

10 [*Maximum mark: 4*]

The diagram below shows part of a straight line that passes through the points P(3,-4) and Q(k,20). If x and y are related by the equation $y=e^{h-4x}$, find the values of h and of k, where h and k are constants.

[4 mark	s]

11	[Maximum mark: 7]

Solutions to this question by accurate drawing will not be accepted.

The diagram shows a trapezium OPQR in which O is the origin, Q is (-4,-6) and R is (-2,-7), $\angle OPQ = 90^{\circ}$ and OR is parallel to PQ.

Find

(a) the area of triangle <i>OQR</i> .	[3 marks]
(b) the equation of <i>OP</i> ,	[2 marks]
(c) the equation of PQ ,	[2 marks]

12 [*Maximum mark: 7*]

Answer the whole of this question on a sheet of graph paper.

The average number of chickens infected with a disease is connected by the equation $n = 215(2^{-t})$ where t is the time in weeks and n is the average number of chickens.

The table below shows some corresponding values of t and n correct to one decimal place.

t	0	1	2	3	4	5
n	215.0	107.5	53.8	26.9	13.4	6.7

(a) Using a scale of 4 cm to represent 1 week on the horizontal axis and 1 cm to 20 chickens on the vertical axis, draw the graph of $n = 215(2^{-t})$ for values $0 \le t \le 5$ and $0 \le n \le 220$.

[3 marks]

(b) Use your graph to find the number of chickens infected when t = 2.5.

[1 mark]

(c) Using your graph, solve the equation $215(2^{-t+2}) - 32t - 80 = 0$.

[3 marks]

****** END OF PAPER 1 *******

1a)
$$1\frac{3}{10}$$

1a)
$$1\frac{3}{10}$$

1b) $\left(5 - \frac{x}{3}\right)\left(5 + \frac{x}{3}\right)$

- 2a) Figure 1
- 2b) Figure 5
- 2c) Figure 2

3a)
$$\frac{10q^{21}}{p^{15}}$$

3b) 2

4a)
$$y = \frac{3a^2x - ab^2x}{b^3 + 4a^2}$$

- 4b) 7

4b) 7
5a) 125
5b)
$$y = \frac{2}{3}$$
 or $y = -2$ and $x = -\frac{1}{3}$ or $x = 1$
6a) $y = (x + 1)^2 + 2$
6b)

- 6c) 6
- 7a) 32, 128
- 7b) 2.9928
- 8a) 2

8b)
$$x^2 - 16x + 8 = 0$$

- 9) 6 or 2
- 10) h = 8 and k = -3
- 11a) 8
- 11b) $y = -\frac{2}{7}x$
- 11c) $y = \frac{7}{2}x + 8$
- 12a)

12c) 38