J.	1Ľ

RIVER VALLEY HIGH SCHOOL YEAR 6 PRELIMINARY EXAMINATION II

CANDIDATE NAME			
CENTRE NUMBER	S	CLASS INDEX NUMBER	
H2 BIOLOGY	turad Quastiana		9744/02
Paper 2 Struc	tured Questions		11 Sep 2017 2 hours

Candidates answer on the Question Paper.

No Additional Materials are required.

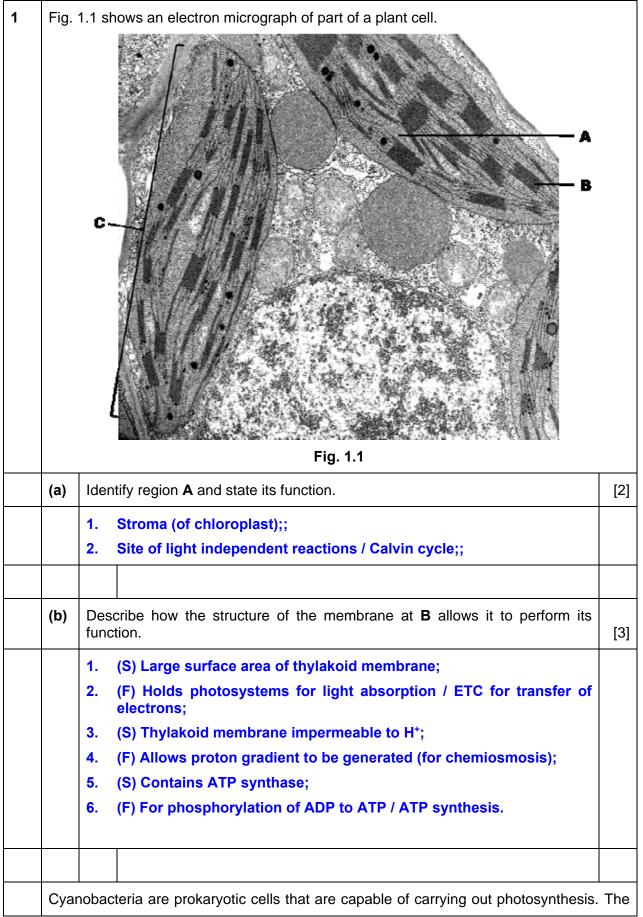
READ THESE INSTRUCTIONS FIRST

Write your Centre number, index number and name in the spaces at the top of this page. Write in dark blue or black pen.

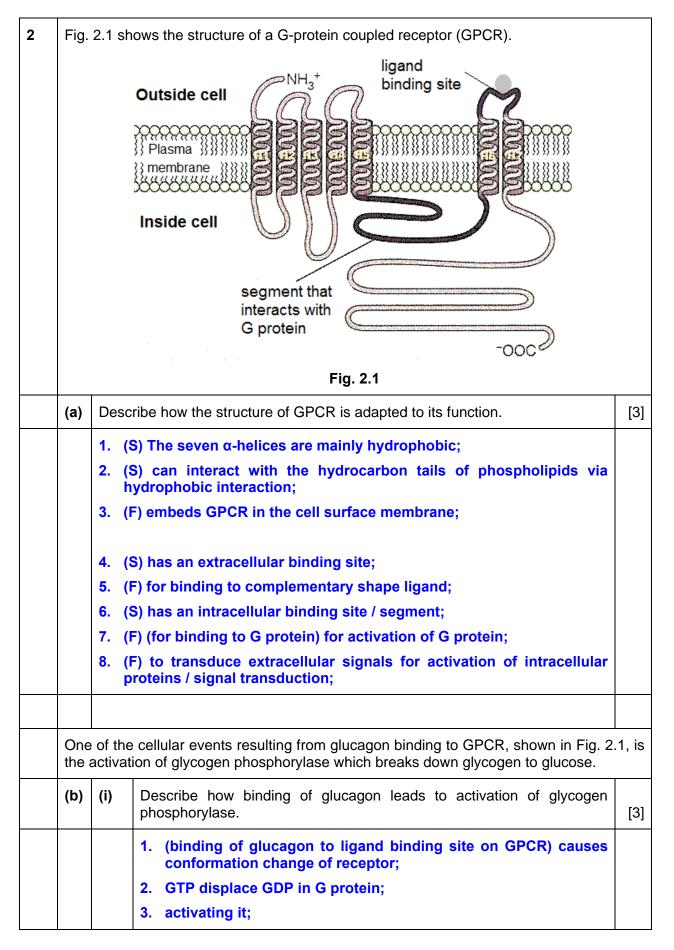
You may use an HB pencil for any diagrams or graphs. Do not use staples, paper clips, glue or correction fluid. DO **NOT** WRITE IN ANY BARCODES.

Answer	all	questions	in	the	spaces	provided	on	the	Question	ı
Paper.		·								

The use of an approved scientific calculator is expected, where appropriate.


You may lose marks if you do not show your working or if you do not use appropriate units.

The number of marks is given in brackets [] at the end of each question or part question.

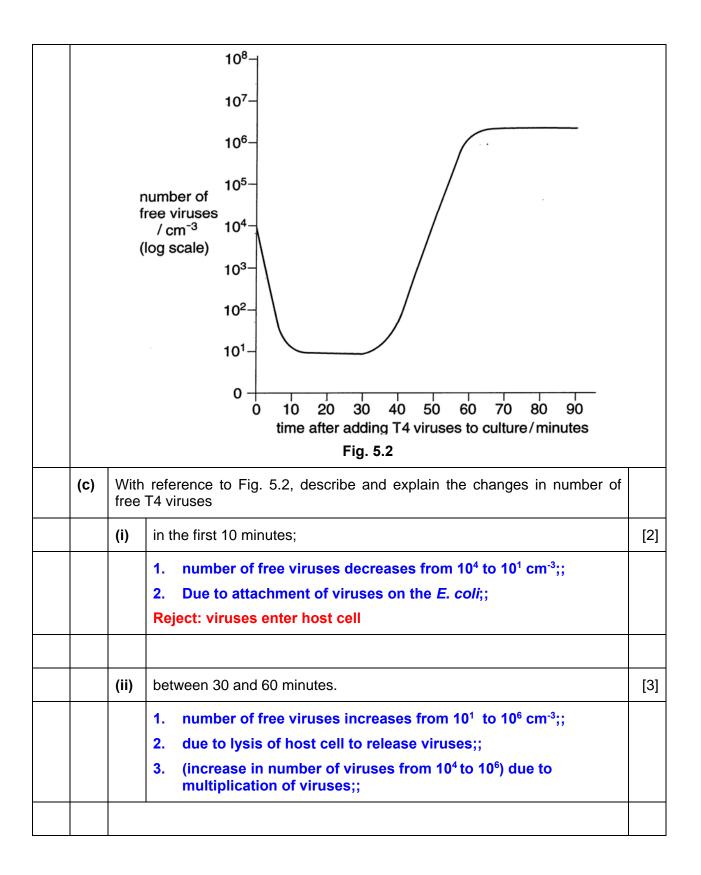

For Exam	iner's Use
1	/ 9
2	/ 13
3	/ 8
4	/ 10
5	/ 12
6	/ 15
7	/ 10
8	/ 11
9	/ 12
Total	
	/ 100

This document consists of 24 printed pages.

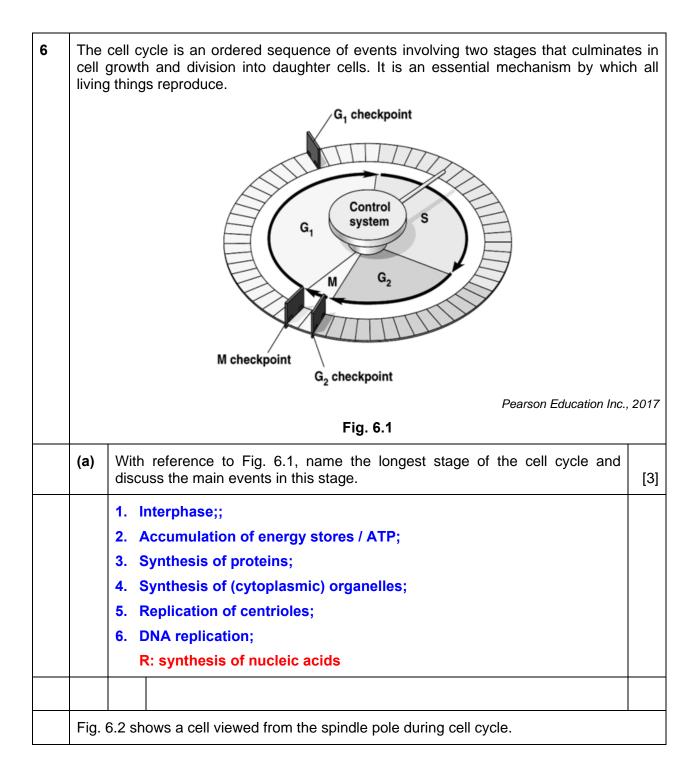
Answer **all** questions.

struc	ture of a cyanobacteria is s	shown in Fig. 1.2.					
	r membrane	Fig. 1.2	Thylako	oids			
 (-)	With reference to Fig. 1	-	the visible structures of				
(c)		With reference to Fig. 1.1 and Fig. 1.2, compare the visible structures of cyanobacteria with that of C .[2]					
	Similarities (1 max)						
	1. Both are bound b	1. Both are bound by two membranes;;					
	2. Both have thylak	oids;;					
	Differences (1 max)						
	Feature	Chloroplast	Cyanobacteria				
	Grana	Present	Absent;;				
	Intergranal lamellae	Present	Absent;;				
funct	ion after being engulfed b	bbacteria are considered to be the ancestors of structure C . They continued to on after being engulfed by primitive eukaryotic cells and evolved over time. This γ is known as the endosymbiont hypothesis.					
(d)	State two features of stru	cture C that provide suppo	ort for this hypothesis.	[2]			
	1. contains circular Di	NA;;					
	2. has 70S ribosomes	;;					
	3. divides via binary fi	ssion;;					
			[Tota	al: 9]			

		4. and move along membrane to activate adenylyl cyclase;	Т
		5. Catalyse conversion of ATP to cAMP;	
		6. Activation of protein kinase A;	
		7. Activate phosphorylation cascade;	
	(ii)	Explain why liver cells store glucose in the form of glycogen.	
		1. (large molecule) insoluble in water and will not exert osmotic or chemical influence on the cell;;	
		2. anomeric carbon is involved in glycosidic bond making glycogen stable and unreactive;;	
		3. extensively branched, hence is compact in shape;;	
(c)	(i)	Explain what is meant by facilitated diffusion.	
		1. Net movement of glucose;	
		 Net movement of glucose; down concentration gradient; 	
		2. down concentration gradient;	
		 2. down concentration gradient; 3. via channel /carrier protein; 	
	(ii)	 2. down concentration gradient; 3. via channel /carrier protein; 	
	(ii)	 2. down concentration gradient; 3. via channel /carrier protein; 4. without additional investment of energy; Explain why glucose transporters are necessary to facilitate this 	
	(ii)	 2. down concentration gradient; 3. via channel /carrier protein; 4. without additional investment of energy; Explain why glucose transporters are necessary to facilitate this process. 	
	(ii)	 2. down concentration gradient; 3. via channel /carrier protein; 4. without additional investment of energy; Explain why glucose transporters are necessary to facilitate this process. 1. glucose is polar;; 	
	(ii)	 2. down concentration gradient; 3. via channel /carrier protein; 4. without additional investment of energy; Explain why glucose transporters are necessary to facilitate this process. 1. glucose is polar;; 2. cannot diffuse across hydrophobic core; 	
	(ii)	 2. down concentration gradient; 3. via channel /carrier protein; 4. without additional investment of energy; Explain why glucose transporters are necessary to facilitate this process. 1. glucose is polar;; 2. cannot diffuse across hydrophobic core; 	

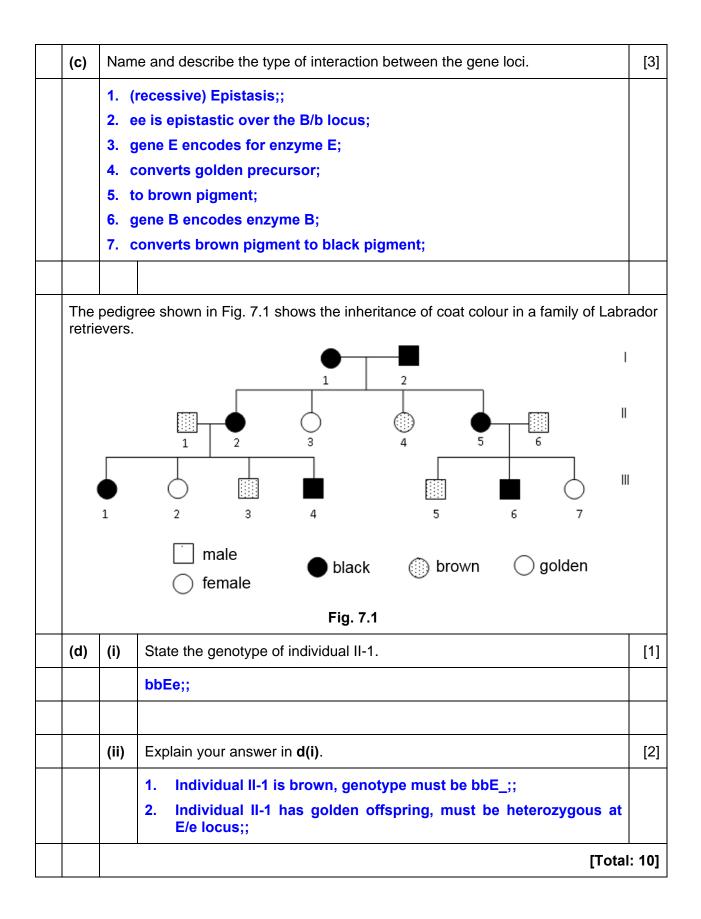

3	Fig. 3.1 shows DNA replication in an <i>Escherichia coli</i> (A) and in a mammalian cell (B Diagrams are not shown to scale.						
			ノーシー				
		A B Fig. 3.1					
	(a)	(a) State one way in which the DNA replication in these two organisms differs and explain the advantage of this to the mammalian cell.					
		1. Single origin of replication in bacterium but multiple origin of replication in mammalian cell;; Accept: multiple replication sites / bubbles					
		2. Larger / longer DNA, speed up replication;;					
	(b)	Explain why DNA replication is said to be semi-conservative.	[2]				
		1. Parental DNA strands separate / ref. to H bonds break;					
		2. Both strands acts as a <u>template</u> for synthesis of daughter strand;					
		3. Each daughter DNA molecule consists of one parental strand and one newly synthesised strand of DNA;;					
	in et	replication problem is a fundamental problem associated with replicating DNA ukaryotes. The cells contain telomerase, which is responsible for extending the ends of DNA					
		ukaryotes. Fig. 3.2 shows the action of a telomerase enzyme.					

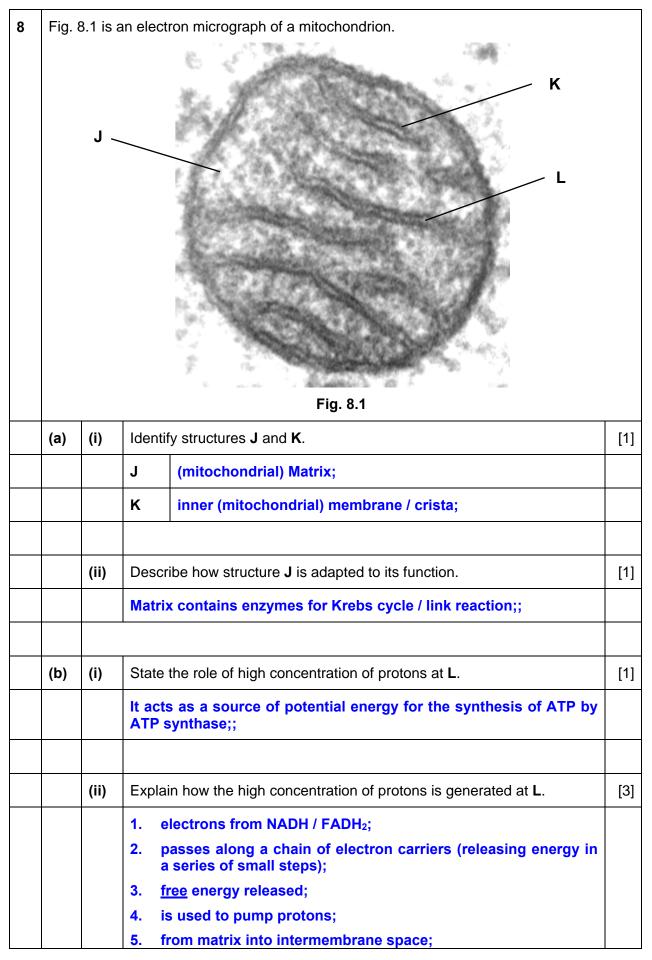
		AGGGTTAGGGTTAGGGTTA 5'	rase with bound			
		Fig. 3.2				
(c)	(c) Explain how the end-replication problem arises.					
	 the RNA prin DNA); cannot be rep without a 3' h 	DNA); 3. cannot be replaced after their removal;				
(d)	 With reference to Fig. 3.2, state two differences between transcription and the process of lengthening of DNA ends. 					
	Feature	Lengthening of DNA	Transcription			
	Template	RNA	DNA			
	Monomers	DNA nucleotides	RNA nucleotides			
	Enzyme involved	Telomerase	RNA polymerase			
		DNA	RNA			
	Product synthesised	2.0.1				
		DNA	RNA			


4	Huntington's disease is a rare neurodegenerative disorder targeting the central nervour system. Transcriptional dysregulation is one of the commonly observed molecular abnormalities affected in this disease. Recent evidence suggests the involvement of a mutant Huntingtin protein in the processes regulating condensation of DNA, leading the activation of DNA damage response and death of nerve cells. DNA in various levels of condensation can be observed in the nerve cell nucleus. Fig. 4.1 shows one of the level of condensation of chromatin.								
		А	833	666		B			
		в	Della	The	20055	AT .			
				Fig. 4.1					
	(a)	a) It is postulated that mutant Huntingtin protein facilitates packing of DNA into structure shown in Fig. 4.1. Describe how the DNA double helix is condensed into this structure.							
		 DNA coils around histone octamer; Forming 'beads on a string' structure' / 10 nm chromatin fibre / nucleosome fibre; 							
		 Histone H1 fur with linker DN 		o the struct	ure				
	(b)	The chromosomal observed transcrip transcription is affe	tional dysregula	• •			•	[3]	
		1. Downregulation	on of transcript	ion;;					
		2. DNA is conde	• •	lded;					
		3. Promoter not							
		 for binding of to <u>initiate</u> tran 	RNA polymeras scription;	se / transcr	iption facto	ors;			
	speci	observed that nerv ific amino acids. How	wever, the mech	anism that t	riggers ubiq	uitination is	unclear.		
		study to determine o acids were investi	gated and the re	•		• ·	eins, sele	ected	
		13 th amino acid: serine	16 th amino acid: serine	6 th amino acid: lysine	9 th amino acid: lysine	15 th amino acid: lysine	Fate o Hunting protei	gtin	
	Trial	1 De-	De-	Ubiquitin not	Ubiquitin not	Ubiquitin not	Remai	ns	

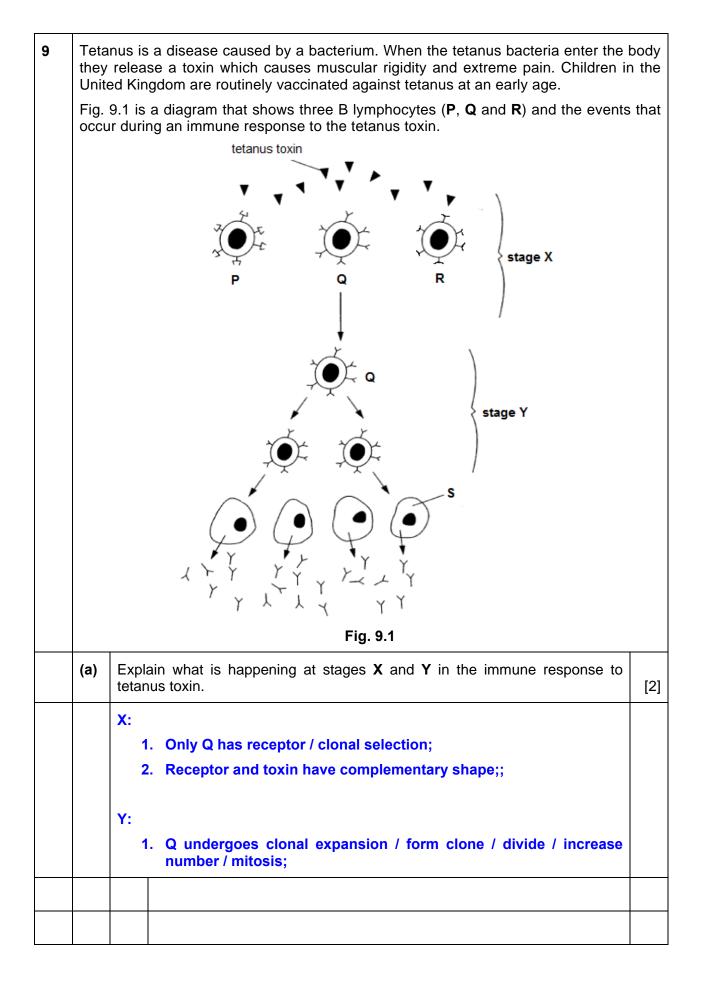
B pł Pł With r (i)	hosphorylated De- hosphorylated hosphorylated reference to Ta state the level Post-translati	De- phosphorylated Phosphorylated Phosphorylated able 4.1,	Ubiquitin not attached Ubiquitin attached Ubiquitin attached	Ubiquitin not attached Ubiquitin not attached Ubiquitin attached	Ubiquitin not attached Ubiquitin attached Ubiquitin attached	Remain active Remain active Degrad	ns e
With r	hosphorylated hosphorylated reference to Ta state the level	Phosphorylated	not attached Ubiquitin attached	not attached Ubiquitin	not attached Ubiquitin	active	Э
With r	reference to Ta state the level	able 4.1,	attached			Degrad	ed
(i)	state the level						
	Post-translati		untingtin ge	ne expressi	on.		[
		ion;;					
		events at the f Huntingtin prot		amino acida	s that trigge	ers the	[:
	 at position ubiquitina 	n 13 and 16; ation of <u>lysine</u>	residues;	5;			
	describe how protein.	ubiquitination re	esults in the	e removal o	f mutant Hu	Intingtin	[;
	2. Proteasor	on;; mes recognise	s ubiquitin	(tag) on pr	otein;		
-		degradation of 1. Phosphore 2. at position 3. ubiquitina 4. at position iii) describe how protein. 1. Ubiquitina degradation 2. Proteason 3. and hydr	 degradation of Huntingtin prot 1. Phosphorylation of serin 2. at position 13 and 16; 3. ubiquitination of lysine 4. at positions 6, 9, and 15 iii) describe how ubiquitination reprotein. 1. Ubiquitin marks the degradation;; 2. Proteasomes recognise 3. and hydrolyses / break 	degradation of Huntingtin proteins. 1. Phosphorylation of serine residues 2. at position 13 and 16; 3. ubiquitination of lysine residues; 4. at positions 6, 9, and 15; iii) describe how ubiquitination results in the protein. 1. Ubiquitin marks the mutant degradation;; 2. Proteasomes recognises ubiquitin 3. and hydrolyses / breaks down p	 degradation of Huntingtin proteins. 1. Phosphorylation of serine residues; 2. at position 13 and 16; 3. ubiquitination of lysine residues; 4. at positions 6, 9, and 15; iii) describe how ubiquitination results in the removal o protein. 1. Ubiquitin marks the mutant Huntingtin degradation;; 2. Proteasomes recognises ubiquitin (tag) on protein into a series of the series of th	 degradation of Huntingtin proteins. 1. Phosphorylation of serine residues; 2. at position 13 and 16; 3. ubiquitination of lysine residues; 4. at positions 6, 9, and 15; iii) describe how ubiquitination results in the removal of mutant Hupprotein. 1. Ubiquitin marks the mutant Huntingtin proteid degradation;; 2. Proteasomes recognises ubiquitin (tag) on protein; 3. and hydrolyses / breaks down protein into peptide /	 degradation of Huntingtin proteins. 1. Phosphorylation of <u>serine</u> residues; 2. at position 13 and 16; 3. ubiquitination of <u>lysine</u> residues; 4. at positions 6, 9, and 15; iii) describe how ubiquitination results in the removal of mutant Huntingtin protein. 1. Ubiquitin <u>marks</u> the mutant Huntingtin protein for degradation;; 2. Proteasomes recognises ubiquitin (tag) on protein; 3. and hydrolyses / breaks down protein into peptide / amino

5	Fig.	5.1 shows the structure of a T4 virus.	
		Y	
		Fig. 5.1	
	(a)	Identify structure Y .	[1]
		Double-stranded deoxyribonucleic acid;;	
	The	T4 virus cannot reproduce by itself and relies upon a host cell for reproduction.	
	(b)	State specifically why T4 viruses rely on host cells for their reproduction.	[2]
		1. lacks a named enzyme (e.g. RNA polymerase / DNA polymerase);;	
		 lacks a named organelle (e.g. golgi apparatus for protein modificati RER for protein synthesis);; 	ion /
		3. lacks a named molecule for protein synthesis / DNA replication;;	
		4. lacks a named energy resources, e.g. ATP;;	
	T4 v	iruses use bacteria as its host. Fig. 5.2 shows the results of an experiment in w iruses were added to a culture of bacteria. Samples of the culture were then take vals to determine the number of free T4 viruses present.	

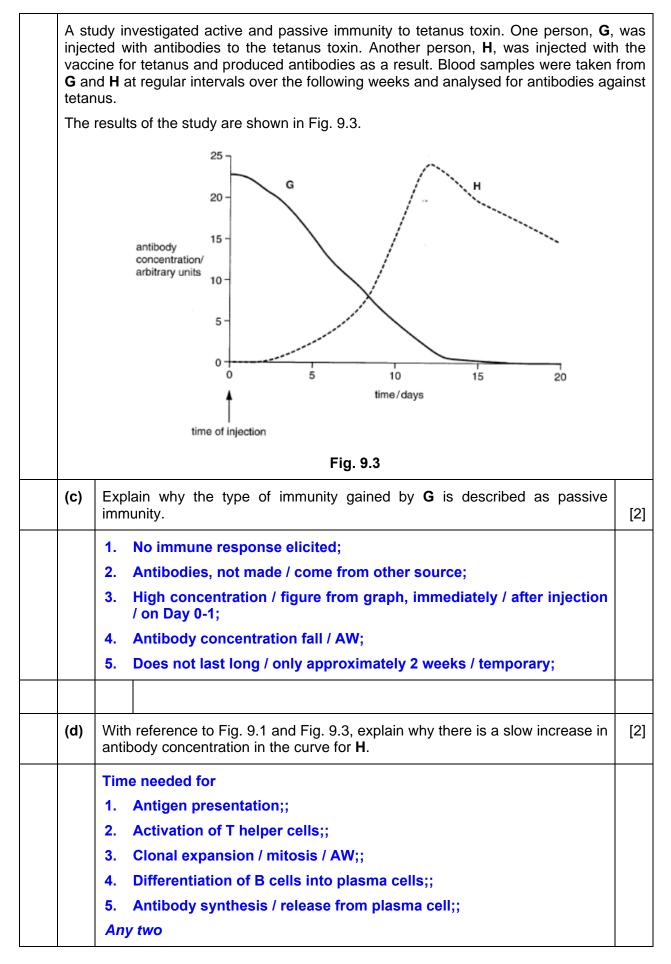

I				
	cells	whic	carried out an investigation using T4 virus and two strains of bacteria: B^+ h can grow in media without lysine and B^- cells which only grow when vith lysine. The procedure is shown in Fig. 5.3.	
			T4 are mixed with B ⁺ cells	
			\downarrow	
			T4 are isolated from the culture and added to B cells	
			•	
			B cells are plated on medium lacking lysine ↓	
			Growth observed on medium	
			Fig. 5.3	
((d)	(i)	Explain the observations made by the scientist.	[3]
			1. (Generalised) transduction;	
			2. T4 infects B ⁺ cell;	
			3. Fragment of B ⁺ DNA confers ability to produce lysine;	
			4. are accidentally packaged into phage capsid;	
			5. Upon release from B ⁺ cell, transducing phage <u>infects</u> new B ⁻ cell;	
			6. B ⁺ DNA incorporated into B ⁻ DNA (via homologous exchange);	
			Penalise 1 mark for lack of contextualisation	
		(ii)	Suggest one other potential benefit of the process mentioned in (d)(i) for the recipient bacteria.	[1]
			1. Develop antibiotic resistance/ xenobiotic (chemical) resistance;;	
			2. Ability to utilise a new metabolite;;	
			[Total	• 121
			[



		e U		n B S	
		1	Fig. 6.2		
(b)	(i)	State the type of 6.2.	nuclear division and name	e the stage shown in Fig.	[1]
		Type: mitosis; Stage: metaphase;			
	(ii)	Explain your answ	er for (b)(i) .		[2]
	 Chromosomes lined up at metaphase plate singly (∴not meiosis I);; (4) pairs of homologous chromosome present (∴ not meiosis II);; 				
(c)	With reference to Fig. 6.2, complete Table 6.1 to show the number of chromosomes and mass of DNA in each nucleus during different phases of mitosis.				
			Table 6.1		
			Number of chromosomes per nucleus	Mass of DNA per nucleus / μg	
	Proj	phase of mitosis	8;	170	
	Metaphase of mitosis		8;	170;	
	Telo	phase of mitosis	8;	85;	
of-f	unction		es are among the most co to-oncogenes are known ing pathways.		


(d)	Explain what is meant by proto-oncogenes.	[1½]
	1. Normal genes;	
	2. which codes for a protein;	
	3. that promotes <u>normal</u> cell division;	
(e)	Explain how a mutant Ras protein may lead to cancer.	[3]
	1. Hyperactive / degradation-resistant Ras protein;;	
	2. relays signal from growth factor / triggers kinase cascade;	
	3. in the absence of growth factor;	
	4. Resulting in proteins that stimulate cell cycle;	
	5. thus uncontrolled cell division;	
(f)	Other than cancer cells, <i>ras</i> gene expression is also upregulated in embryonic stem cells. However, the latter does not result in a disease phenotype.	
	Explain what embryonic stem cells are.	[2]
	1. unspecialised cell / pluripotent;	
	2. can divide and grow <u>indefinitely;</u>	
	3. differentiate into any cell type except those that form the placenta and the umbilical cord under appropriate conditions;	
	4. found I inner cell mass of blastocyst;	
	[Tota	l: 15]

7	pres the c	The coat colour of Labrador retriever dogs are determined by genes at two loci. The presence of the dominant alleles B and E results in black coats, whilst the presence of only the dominant allele E results in brown coats. Individuals that are homozygous recessive a the E/e locus will have golden coats.								
	gold	A true breeding male retriever with a black coat was crossed with a female retriever with golden coat. The resulting F_1 offspring all had black coats and the same genotype. A te cross was conducted for the F_1 individuals.								
	(a)	State the ge	notype of the F_1	individuals.			[1]			
		BbEe / BBE	e;;							
	(b)	(b) Using the symbols for the alleles stated above, draw a genetic diagram to explain the test cross.								
		henotypes ross	Blac BbE		Golden bbee	;				
	F₁ g	ametes	BE Be	bE be ;	be	;				
	Ran	dom Fertiliz	ation (as sho	wn in the Pur	nnett Square)				
			BE	Be	bE	be				
		be	BbEe Black	Bbee Golden	bbEe Brown	bbee; Golden;				
	Offs	pring pheno	otypic ratio	1 Black	: 2 Golden	i : 1 Brov	vn ;			
	OR									
		henotypes ross	Blac BBE		Golden bbee	;				
	F1 gametes BE Be ; be ;									
	Ran	Random Fertilization (as shown in the Punnett Square)								
			BE	Be						
		be	BbEe Black	Bbee Golden						
	Offspring phenotypic ratio 1 Black : 1 Golden;									



		6. inner mitochondi	rial membrane i	s <u>impermeable</u>	<u>to ions;</u>	
	mito	an investigation to det ochondria were incubated 1. with glucose 2. with pyruvate 3. with glucose and cher 4. with pyruvate and cher results are summarised i	in four ways: nical M mical M n Table 8.1.		al M on respira	tion,
			Table 8. CO2 evolution	O ₂ consumption	ATP production by oxidative phosphorylation	
		Glucose	х	x	x	
		Pyruvate	✓	\checkmark	✓	
		Glucose + chemical M	х	х	x	
		Pyruvate + chemical M	\checkmark	\checkmark	x	
(c)	(i)	Explain why carbon incubated with pyruvate				[3]
		 no glycolytic enzymes in mitochondria; glycolysis does not occur in the mitochondria / glycolysis can only occur in the cytosol; glucose cannot be oxidised to form pyruvate; pyruvate can enter mitochondria but glucose cannot; CO₂ produced by decarboxylation in link reaction; and Krebs cycle; 				
	(ii)	Suggest why when r chemical M , oxygen co				[2]
		 Chemical M only block ATP synthase so no phosphorylation of ADP/no flow of H⁺ down concentration gradient (through ATP synthase);; 				_
	2. Chemical M does not affect ETC to transfer electrons to oxygen;;					
					[Total:	: 11]

Fig. 9.2 shows an antibody molecule secreted by cell S .					
	variable region variable				
	Fig. 9.2				
(b)	Describe how the antibody is folded from linear polypeptide chains.	[4]			
	 Localised folds; A: (H) bonds between CO and NH groups along the polypeptide backbone; give rise to α-helix; and β-pleated sheets; Interactions between R groups of <u>amino acid residues;</u> bends the (secondary) structure into tertiary / precise / compact / globular shape; (quaternary structure) consist of <u>4</u> polypeptide chains; 2 heavy chains and 2 light chains; 				

(e)	Explain why person \mathbf{H} is considered to be better protected against future exposure to the tetanus toxin, compared to person \mathbf{G} .	[2]
	 Person H has immunological memory / memory cells; able to elicit a secondary response; which is rapid; and allows a larger production of antibody; 	
	[Total	l: 12]