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LEARNING OUTCOMES 

Candidates should be able to: 

a. 
recall the following base quantities and their units: mass (kg), length (m), (s), 

current (A), temperature (K), amount of substance (mol). 

b. express derived units as products or quotients of the base units and use the 

named listed in ‘Summary of Key Quantities, Symbols and Units’ as appropriate. 

c. Use of SI base units to check homogeneity of physical equations. 

d. 
show an understanding and use the conventions for labeling graph axes and 

table columns as set out in the ASE publication Signs, Symbols and Systematics 

(The ASE companion to 16-19 Science, 2000). 

e. 
use the following prefixes and their symbols to indicate decimal sub-multiples or 

multiples of both base and derived units: pico (p), nano (n), micro (µ), milli (m), 

centi (c), deci (d), kilo (k), mega (M), giga (G), tera (T). 

f. 
make reasonable estimates of physical quantities included within the syllabus. 

g. 
distinguish between scalar and vector quantities, and give examples of each. 
 

h. 
add and subtract coplanar vectors. 

i. 
represent a vector as two perpendicular components. 

j. 
Show an understanding of the distinction between systemic errors (including 
zero error) and random errors. 

k. 
show an understanding of the distinction between precision and accuracy. 

l. 
assess the uncertainty in a derived quantity by simple addition of actual, fractional or 

percentage uncertainties or by numerical substitution (a rigorous statistical treatment 

is not required). 
 

 
Physics Books for further reading : 

Physics for Scientists and Engineers.  Serway. 

College Physics.  Sears and Zemansky. 

Physics.  Robert Hutchings. 

Physics.  Tom Duncan. 



    

 

   

 

 

 1.0  Quantities and Units 
 

The science of physics is based upon taking measurements.  All scientific theories and laws must be 
tested experimentally, and all experiments necessitate making measurements. 
 

1.1 Physical Quantities: Base Quantities and Derived Quantities  

 

In Physics, quantities that can be measured are known as physical quantities.  Each quantity 

consists of a numerical magnitude and a unit. (For vectors, there are directions as well.) 

Base quantities are physical quantities that are the most fundamental and they are independent of 

each other. The corresponding units for the base quantities are called the base units. It is important 
at all times to think of and write the value and the unit of any quantity together. 
 
The metric system of units was introduced at the time of the French Revolution to rationalise the 
chaos of units that existed at that time. It has been modified since then and now most countries use 
the metric system of units called the Systeme International (SI).  The advantage of the SI system of 
units is that any quantity has only one unit in which it can be measured. 

  

 Quantities can be classified as base quantities or derived quantities. 

 Base quantities are the 7 physical quantities of the S.I. system by which all other physical 

quantities are defined. They  arbitrarily chosen by scientists so that they: 

a) form the smallest set of physical quantities that will lead to a complete description of 

physics in the simplest terms. 

b) are based on international agreement by scientists. 

 Derived quantities are obtained from one or more of the base quantities through a defining   

            equation. 

Base Units 

 There are 7 base units, one for each of the base quantities. 

 Base units are the 7 base units of the S.I. system, related to a base quantity, whose 

magnitude is defined without referring to any other units. The units used in measurement are 

the International System of Units (SI). 

 

Base Quantity Base Unit Name 

Length m metre 

Mass kg kilogram 

Time s second 

Electric current A ampere 

Temperature K kelvin 

Amount of substance mol mole 

Luminous Intensity cd candela 

 

 

 



    

 

   

 

Derived Units 

 A derived unit can be expressed in terms of base units by using the defining equation of the 

quantity. 

 It is obtained from the base units by multiplication and/or division; without including any 

numerical factors. 

 

 

 

 

 

 

 

 

        

 

 

 

 

 

 

 

 

Solution: 

                The defining equation is E=hf 
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E
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       Solution: 
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         CD is dimensionless.  

 (Quantities that have no units are known as dimensionless.) 

 

 

 

DERIVED 

QUANTITIES 

Defining 

Equation 

Base SI  

Units 

Derived 

Unit 

Volume V = l 
3
 m

3
 - 

Velocity v = d/t ms
-1
 - 

Frequency f = 1/T s
-1 

Hz 

Force F = ma Kgms
-2
 N 

Work or Energy W = Fd kgm
2
s

-2
 J 

Pressure P = F/A kgm
-1
s

-2
 Pa 

Charge Q = It As C 

Example 1:  

The energy of a photon of light frequency f is given by hf, where h is the Planck constant. What 

are the base units of h? 

Example 2:  

The drag coefficient CD of a car moving with speed v through air of density  is given by 

Apv

F
CD 22

  where F is the drag force exerted on the car and A is the maximum cross-

sectional area of the car perpendicular to the direction of travel. Show that CD is dimensionless. 



    

 

   

 

 

Prefixes 

In physics, it is common to encounter quantities that are very large or minute in magnitude. For 

example, Earth’s mean radius is estimated to be 6 400 000 m. Radius of a hydrogen nucleus is 

approximately 0.000 000 000 000 001 3 m. To include all the zeros in all computation or steps will be 

undesirable and hence scientists adopted any of the 2 methods: use of scientific notation (standard 

form) or prefixes.  

 

Prefix Symbol Sub-multiple Prefix Symbol Sub-multiple 

Pico p 10
-12

 Kilo k 10
3
 

Nano n 10
-9
 Mega M 10

6
 

Micro μ 10
-6
 Giga G 10

9
 

Milli m 10
-3
 Tera T 10

12
 

Centi c 10
-2
    

Deci d 10
-1
    

 

       Solution 

 800, 000 W = 800 kW = 0.8 MW 

 0.0000325 m = 0.0325 mm = 32.5 m 

 2.65 x 10
-10

 s = 2.65 x 10
-1

 x (10
-9

) = 2.65 x 10
-1

 ns 

 

Example 3:   
Convert the following to suitable units with prefix:  800, 000 W; 0.0000325 m; 2.65 x 10

-10
 s 



    

 

   

 

Estimates Of Physical Quantities 
 

You are expected to make reasonable estimates of the order of magnitude of common physical 
quantities.  

 

 

 

 

 

 
Solution 

The mass of an average person is about 60 kg and it consists of mainly water.  Molar mass of water 
is 18 g = 0.018 kg. 
60 kg consist of 60/0.018 = 3.3 x 10

3
 moles. 

Hence no. of molecules = 3.3 x 10
3
 x 6.02 x 10

23
 = 2 x 10

27
 molecules. 

 

Orders of Magnitude of Some Common Data 
 

Distances 

Radius of Earth   6400 km  Moon-Earth Distance  3.8 x 10
8
 m 

Earth-Sun Distance  1.5 x 10
11

 m Size of atom   10
-10

 m (1 Å) 

Size of nucleus   10
-15

 m  Wavelength of visible light  4-7 x 10
-7

 m 

 

Density 

Density of air   about 1 kgm
-3 

Density of water   1000 kgm
-3

 

Density of metals   about 10
3
 kgm

-3
  

 

Mass 

Mass of atom   10
-27

 kg  Mass of person   60 kg 

Mass of earth   6.0 x 10
24

 kg 

 

Speed 

Speed of walking person    ~ 3 kmh
-1

 or 0.8 ms
-1   

Speed of running person    ~ 10 kmh
-1

 or 2.7 ms
-1

 

Speed of car     ~ 60 kmh
-1

 or 17 ms
-1

 

Speed of molecular movement in air (Room temp)  300 ms
-1

 to 400 ms
-1

 

Speed of light     3 x 10
8
 ms

-1    

Speed of sound     ~ 300 ms
-1

 

 

Others 

Atmospheric pressure  1.01 x 10
5
 Pa Room temperature  303 K (30 

o
C) 

 

Example 5: 

Which of the following gives the estimated number of atoms in your body? 

 A    10
24

 B   10
27

  C    10
30

 D   10
33 

 

VJC 2010 Prelim 

Example 4: 

What is a reasonable estimate for the volume of a wooden metre rule found in a school laboratory? 

 A    1.5 cm
3
 B   15 cm

3
 C    150 cm

3
 D   1500 cm

3 

 

Volume = 100 cm x 3 cm x 0.5 cm = 150 cm
3
 

Answer C 
2007 P1Q1   



    

 

   

 

1.2  Homogeneity Of Physical Equations  

When we try to form equations that describe a physical system or phenomenon, it is important to 
understand how the concept of homogeneity helps us: 
 
1. Equations that are not homogeneous are definitely wrong.  
2. Equations that are homogeneous may or may not be correct. Possible causes of equations that are 

homogeneous but are incorrect. 
 (i) Presence/absence of dimensionless constant 
 (ii) Incorrect coefficient. 
 (iii) Presence of extra term(s)/ Missing term(s). 

 
 When an equation is homogeneous (or dimensionally consistent), the following rules must be 

applicable: 

 Only terms with the same units can be added or subtracted e.g. C = A + B 

implies that A and B must have the same units. 

 Units on both sides of the equation must be the same e.g. A = B implies that A 

and B must have the same units. 

 The exponent of a term must not have any unit e.g. RC

t

e



 implies that units of RC 

combined must have the same unit as time, t. 

 1.3 Plausibility of Physical Equations 

Checking the homogeneity of an equation using base units (or dimensional analysis) is a powerful way of 
establishing if the physical equation is reasonable. It narrows the numerous combinations that may exist.  
 
For example, consider the period T of a simple pendulum. The possible factors which may affect it are its 
length l, its mass m and the acceleration due to gravity g.  
 
We can therefore form an equation that describes the factors that affect the period of a simple pendulum: 
  

T  l 
x

 m 
y

 g
z
  where x, y and z are pure numbers without units 

 

 T = k l 
x

 m 
y

 g
z

  where k is a “unit-less” constant of proportionality. 
 
In some situation, k may have a unit. 
 

     

           Solution 

   

(a) Unit of T = s; units of l = m; units of g = m s
-2
 

          Units of 2 
g

l
 = 

-2

m

m s
 = 

2-s

1
 = 

2s  = s 

                     Since units on LHS = units on RHS, equation is homogeneous. 
 

Example 6:  Check that the equations (i) T = 2
l

g
 and (ii) x = ut + 

2

1
 at

2  
 are homogenous. 



    

 

   

 

               

(b)  Units of u = m s
-1
; unit of t = s; units of a = m s

-2
; unit of s = m. 

Units of ut = (m s
-1
)(s) = m;  Units of 

2

1
 at

2
 = (m s

-2
)(s

2
)= m. 

Since units of x = units of ut = units of 
2

1
 at

2
, equation is homogeneous. 

Further Readings 

The Metre Convention. http://www.bipm.org/en/worldwide-metrology/metre-convention/ 

This kilogram has weight-loss problem. http://www.npr.org/templates/story/story.php?storyid=112003322 

http://www.bipm.org/en/worldwide-metrology/metre-convention/
http://www.npr.org/templates/story/story.php?storyid=112003322


    

 

   

 

2. Errors and Uncertainties 
2 ERRORS  
 
Error refers to the difference between a measured quantity and its true value. There are various 
factors that give rise to errors. However, in experiments, outright errors such as misreading a 
measurement (including parallax error), wrong calculations or poor execution of the experiment 
should not be considered as a legitimate set of errors when discussing the reliability of the results of 
the experiment. An experiment is only meaningful when such errors are avoided.  Errors in 
measurement can result in costly or catastrophic outcome. An example of an error in measurement 
is the Hubble telescope.  An error in calibration tool during the polishing process of the mirror led to 
the imperfect image sent back to earth when the Hubble telescope was first used in space in 1990.  
After a few costly repairs in outer space by the space shuttle missions, it was finally corrected and 
put to good use in 2009. 
 
While the uncertainty in a reading is an inherent limitation of our measuring instruments, errors could also 
arise from different sources. They could be due to the following: 
 

(a)  The Instrument 
Mass-produced instruments may not be correctly calibrated. Old instruments like ammeter and 
voltmeter may suffer drift in accuracy due to the weakening of magnet or spring inside the meters. 
External conditions, particularly at extreme temperatures, may affect the accuracy of many 

instruments. The drift of the zero reading contributes to zero errors. 
 

(b)  The Experimenter 
Improper use of instruments is a common source of error. Examples are parallax error, misalignment 
of the zero scale or over-tightening of the micrometer screw gauge. 
 

(c)  Nature of Quantity to be Measured 
Some quantities may inherently change with time during the measurement (e.g. change in the 
resistance of a wire due to heating) or may give different values of measurements when taken at 
different points (e.g. diameter of a long wire). 

  

Errors can be classified under 2 categories, namely Systematic Errors and Random Errors. 

 

2.1  Systematic Errors 
 

A systematic error is one that leads to readings that are consistently more or consistently less* than 
the actual reading. 

*Note that the phrase is consistently more or consistently less NOT consistently more or less. A systematic error is 

either too high or too low, NOT both. 
 
(i) A systematic error is a reproducible error caused by imperfect equipment, calibration or technique. 
(e.g. a shrunken, bent or damaged meter rule) 
 

(ii) It can be eliminated if the source is known and removed. (i.e. use more accurate equipment, 
calibrate the equipment properly or use a better/correct technique) 
 
(iii) To detect systematic errors, you would need to either make measurements under different 

experimental conditions  
  
 OR  

 
 use another technique to perform the experiment.  
 

A consistently different set of results reveals the presence of systematic errors.  



    

 

   

 

2.1.1  Some common systematic errors 
a. Zero error  
 The pointer of an instrument does not exactly coincide with the zero mark when it is supposed to.  

Always check for zero errors before using an instrument such as a micrometer screw gauge or a 
vernier calipers. 

b. End error  
 For example, in some rulers, the 0-cm mark starts right at the edge of the ruler.  End error occurs 

when there is wear and tear at the ends of such a ruler after being used for many years such that the  
 0-cm mark is no longer present. 
 
When conducting experiments, systematic errors that can be accounted for or rectified should be 
corrected immediately.  
 

2.2 Random Errors 
Even if every step of the experiment was done properly and all systematic errors accounted for, a quantity 
measured a number of times would not give identical results. There will be a fluctuation in the results and 
this is known as random error. 
 

A random error is one that gives rise to a scatter of readings about a mean value. 

 

Random errors can be reduced by taking the average of repeated readings. 
  

Random errors cannot be eliminated even if the source is known because there is no way to 
reproduce exactly the same conditions in each measurement. 
 

 Pure Random Error Random with Systematic Error 

 
 

2.2.1 Some common random errors 
a. Fluctuating conditions of environment - such as temperature, pressure, vibrations etc. 
 

b. Errors of judgment - e.g. the observer's estimate of a fraction of the smallest division may vary from 
time to time. 

 

a) Parallax errors when reading from an inconsistent direction 
Random errors can arise from 
parallax when an observer 
reads a scale from an 
inconsistent direction. In Fig. 2, 
a plane mirror is placed 
alongside the scale so that the 
viewer may make the correct 
reading when the needle and 
its mirror image coincide; the 
plane of view is then 
perpendicular to the scale.   
 

Scale 
S 

S : Systematic Error 

Fig. 1. Reading from a burette 
from an inconsistent direction. 

 

Fig. 2. Reading from a 
needle deflection pointer 
meter from an inconsistent 
direction. 



    

 

   

 

b) Variations in environmental conditions 
Try as we may to preserve or maintain the experimental conditions, certain things are beyond our control 
e.g. variations in air pressure, temperature, reaction time etc. resulting in slight fluctuations in the readings. 
 

c) Irregularity of the quantity being measured 
Certain quantities by nature do not follow a regular pattern e.g. the spontaneous decay of radioactive 
nuclei, thickness of a wire, loudness of sound, reaction time etc.  

 

 

d) Limitation of the equipment. 
Certain equipment may be so sensitive that it can detect even the slightest variation on the signals which 
can be due to a number of reasons e.g. different applications of pressure on the jockey to the 
potentiometer or on the micrometer screw gauge etc. This may not be a good thing if a general reading is 
what you want.   
 

 

2.2.2 Ways to Reduce Random Errors 

Random errors cannot be eliminated but can only be reduced by: 
a) Taking repeated measurements to obtain an average value.  
b) Plotting a graph to establish a pattern and obtaining the line or curve of best fit. In this way, the 

discrepancies or errors are reduced. 
c) Maintaining good experimental technique (e.g. reading from a correct position) 

 

DISTINCTION BETWEEN SYSTEMATIC ERRORS AND RANDOM ERRORS 

 

 Systematic Errors Random Errors 

How does the 

error affect the 

readings? 

It causes a random set of readings to 
be distributed around an average value 
that is consistently more or consistently 
less than the actual reading. 
The error is predictable. 

It gives a scatter of readings about a mean 
value. 
The error is unpredictable. 
 
 

How to detect 

the error? 

It can be detected by making 
measurements under a different 
experimental conditions or by using 
another technique to perform the 
experiment. A consistently different set 
of results may reveal the presence of 
systematic errors. 

It can be detected by plotting a graph and 
drawing a best-fit line to the points; the 
presence of random errors is reflected by 
the scattering of points about the best-fit 
line.  

How to 

minimize or 

eliminate the 

error? 

These errors may be eliminated if the 
cause is known and rectified, but 
sometimes can only be minimized 
through improving experimental 
techniques. 
Cannot be minimized or eliminated by 
averaging repeat readings. 

Cannot be eliminated, but can be minimized 
by averaging repeat readings or by 
observing the scatter of the graph. 
 
 

 

 

 

 

 

 

 

 

 



    

 

   

 

2.3 Precision And Accuracy 
 

Accuracy is a measure of how close a measurement or result is to the true value. It depends on how well 
systematic errors can be controlled or compensated for. 
 

Precision is a measure of how exact the result is or how close repeated results are to each other. It 
depends on how well random errors can be overcome or analyzed. 
 

If an experiment has small systematic errors, it is said to have high accuracy. 

If an experiment has small random errors, it is said to have high precision. 

 

Illustration of precision and accuracy using shooting target as an example  
 

Diagram 

 
 
 
 
 
 
 
 
 
 

  

Precision Good Poor Good 

Random Error Small Large Small 

Accuracy Poor Good Good 

Systematic Error Large Small Small 

 

Illustration of precision and accuracy in graphical form  

 

Example 1 
Complete the following table. 
*N represents the number of data 
collected, x represents the possible 
values of the results and      xo 
represents the actual value. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Accurate and Precise Accurate and Imprecise 

  

Inaccurate and Precise Inaccurate and imprecise 

xo 

N 

x 

xo 

N 

x 

xo 

N 

x 

xo 

N 

x 

 

 



    

 

   

 

Example 2 
Four students each made a series of measurements of the acceleration of free fall g, where g = 9.81 ms

-2
.  

The table shows the results obtained. 
Which student obtained a set of results that could be described as precise but not accurate? 
 

Student Results, g / m s
-2
 Average Precise Accurate 

A 9.81 9.79 9.84 9.83 9.82   

B 9.81 10.12 9.89 8.94 9.69 x  

C 9.45 9.21 8.99 8.76 9.10 x x 

D 8.45 8.46 8.50 8.41 8.46  x 

 

 

Worked Example 3 
A student measures the time t for a ball to fall from rest through a vertical height, h.  He repeats the 

measurement for various different values of h. Knowing that the equation 
2

2

1
gth   applies, he plots a 

graph of h against t
2
.  Comment on the accuracy and precision of the given data in the boxes below.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Questions: 
 

1. How do you know these graph are accurate or precise? 
 

2. What type of errors resulted in these graphs? 

 

 

2.4 Significant Figures And Precision 
 
When a number such as 0.78 is quoted, it has 2 significant figures (s.f), whereas 0.8, it has only 1 
significant figure (s.f).  The number of s.f is directly related to the precision of the measuring instrument.  
The greater the number of subdivisions, the more the precise is the instrument (and the greater the 
number of s.f in the measurements). 
 
When quoting a final value in a computation of an equation in a physics experiments, the investigator is 
expected to be able to quote the answer to an appropriate number of s.f. 
 
 
 
 
 
 

A B C D 

h/m 

t
2
/s

2 

h/m h/m h/m 

t
2
/s

2 t
2
/s

2 
t
2
/s

2 

Not accurate but 

more precise than C 

Accurate and more 

precise than C 

 

Not accurate and not 

precise 

Accurate but not 

precise 



    

 

   

 

Example 4 
The potential difference (p.d) across a resistor is 2.5 V and the current passing through it is 0.22 A.  
Calculate the resistance.   
 
R = 2.5 V/0.22 A = 11.363636…Ω 
Is this answer correct? 
 
Calculation cannot improve the precision of the measuring instruments.  A p.d quoted as 2.5 V means that 
the measurement lies between 2.45 V and 2.55 V.  Similarly, the current is between 0.215 A and 0.225 A.  
This enables us to calculate a range of possible values for the resistance. 
 
Rmax = 2.55 V/0.215 A = 11.860465… Ω 
Rmin = 2.45V/0.225 A = 10.888888… Ω 
 
Hence the best we can say is that the resistance is near enough 11 Ω.  The figures after the decimal pont 
are meaningless – they are not significant figures.  Rather than doing this maximum/minimum calculation 
all the time, we use the rule that the calculated value can be no precise than the values used to obtain it.  
Hence we should only quote the answer to the same number of significant figures as the least precise 
measurement.  Since the values 2.5 V and 0.22 A are quoted to 2 s.f, our answer must be quoted to 2 s.f, 
i.e R  = 11 Ω. 
 

 

2.4 Uncertainty In A Measurement 
 
Whenever a measurement of a physical quantity is made, some measuring instrument has to be used to 
make that measurement. Built in to the instrument is a limit of accuracy within which the experimenter is 

working. The result of this is that the readings that the experimenter takes have a degree of uncertainty. 
 
Physical quantities cannot be measured exactly with any instrument. An accurate clock might measure a 
time interval to a millionth of a second, but even this is not quite exact.   
 
If a person uses a ruler, the measurement will probably be taken to the nearest millimetre. The 
measurement might be stated as (208 ± 1) mm. This implies that the person taking the measurement 
thinks that the best value is 208 mm, and that the value will not fall outside the range from 207 mm to 209 

mm. The ±1 mm is the uncertainty in the measurement.  (Note: The symbol “  ” is read as plus-minus.) 
 

Uncertainty refers to the range of values on both sides of a measurement in which the actual value of the 

measurement is expected to lie. The uncertainty in a reading can be based on the finite precision in the 
instrument used.  
 

The uncertainty in a reading A is represented by the symbols A (pronounced as “delta A”) .  
 
The experimental reading of A together with its associated uncertainty is properly expressed in the form:  

A  A.  For example: the value of g is 9.81  0.01 ms
2
. 

 

In general, express 

 the uncertainty (A) to 1 significant figure,  

 the calculated value (A) to the same decimal place as the uncertainty  

 both with the same units. 
 

For example: 20.00  0.01 g; 19.1  0.1 cm 

 

 

 

 

1 sig. fig. 



    

 

   

 

2.4.1 Absolute Uncertainty 
When a measurement is made using an instrument, the value obtained will always carry an uncertainty. 
The uncertainty of the measurement obtained is then determined by the division of the scale of an 
instrument. 
 

Scale reading:  

Uncertainty is read to nearest half of the smallest division. 
Example: Using a thermometer to take temperature by reading the height of the mercury thread from the 
fixed scale.  
 

Measurement:  

Uncertainty is read to nearest smallest division. 
Example: Using a ruler to measure the length of a strip of paper. 
 

As these uncertainties are only estimated values, they are always quoted to ONE SIGNIFICANT 

FIGURE . 
 

The numerical value of the uncertainty is known as the absolute uncertainty.  
 
The uncertainty of an instrument determines the order of magnitude (or the number of decimal places) 
that should be quoted for the measurements made with it. The order of magnitude (or number of decimal 
places) in a reading is the same as that in the uncertainty. For example, an exact measurement of 20 cm 
using a ruler must be recorded as (20.0 ± 0.1) cm and not as (20 ± 0.1) cm. 

 

 

2.4.2 Fractional Uncertainty: How Suitable Is Your Instrument? 

Generally, all readings can be recorded in the form R ± R in which R is the absolute uncertainty. 
However, the suitability of an instrument in relation to a certain measurement is not reflected by the 
absolute uncertainty but by the fractional uncertainty (or percentage uncertainty) which is defined as 
follows: 
 
  
 
 
 
 
 
 
 
 

Note:  A small reading  (R ) may give rise to a large fractional uncertainty (
R

R


). 

The fractional and percentage uncertainty give a better indication of the significance of the error and 
the reliability of the measurement and the suitability of the instrument used for it.   

 
For example, when measuring small values such as the diameter of a wire, a precise instrument 
such as a micrometer screw gauge should be used in order to reduce the fractional and percentage 
uncertainty.   
 
 
 
 
 
 

Fractional Uncertainty = 
R

R


 

Percentage Uncertainty = 100%
R

R


  



    

 

   

 

Example  5  

Using a meter rule, a length is measured to be (20.0 ± 0.1) cm.  

The percentage uncertainty is equal to  (0.1/20.0)x100% = 0.5% 
  
However, if the value is (2.0 ± 0.1) cm, the percentage uncertainty is (0.1/2.0)x100% = 5%  
 
Comment on your answers obtained from the 2 calculations. 
 
Using a ruler to measure a small object, the percentage uncertainty of the measurement will be large.  A 
more precise instrument has to be used to reduce the percentage uncertainty of the measurement. 
 

 

2.5 Consequential Uncertainty 
The final result of an experiment is seldom obtained directly from one measurement. It is often calculated 
from a few measurements with the use of an appropriate equation. The calculated value would thus carry 
a consequential uncertainty.  Here are some rules for estimation of consequential uncertainty: 

 

2.5.1 Addition and Subtraction 
 
 
 

 

Example  

 
 
The length of a rod is measured with a meter rule. 
 
  
 
 
 
 
 

x1 = (1.40  0.05)  cm  x2 = (12.80  0.05)  cm 
 

x2 has values ranging from 12.75 cm to 12.85 cm  
x1 has values ranging from   1.35 cm to   1.45 cm 
 

Maximum length L of rod = 12.85 cm - 1.35 cm = 11.50 cm 
Minimum length L of rod = 12.75 cm - 1.45 cm = 11.30 cm 
 
Thus, the length of rod L has values ranging from 11.30 cm to 11.50 cm.  
 
Base on the measurements, L = x2- x1 = 12.80 cm -1.40 cm = 11.40 cm

 

The uncertainty of L = x2 + x1 = 0.05 cm + 0.05 cm = 0.1 cm 
As the uncertainty of the measurements is 0.1 cm,   the value of L cannot be read more precise than 0.1 
cm. 
Hence,  L = (11.4 + 0.1 ) cm  

 

 

 

 

 

If Y = a + b or Y = a – b, then the consequential uncertainty of Y is 

given by  

 

Y = a + b 



    

 

   

 

Example 6 

Given that a = (41.2  0.1) cm, b = (20.1  0.5) cm: 
a) What is the value of X and its consequential uncertainty, if X = a + b ? 
 
X= 41.2 +20.1 = 61.3 cm 

X =A+B = 0.6 cm 
 
 
 
b) What is the value of Y and its associated uncertainty, if Y = a – b ? 
 

 

 

 

Important note: 

 

In general, if X = nA  mB, where n and m are constants then  
 

X = nA + mB 
 

Example 7 

Given that A = (41.2  0.1) cm, B = (20.1  0.5) cm: 
Find X and its uncertainty, if X = 5A – 2B. 
X = 5(41.2) -2 (20.1) = 165.8 

X = 5A+2B = 1.5 cm  = 2 cm (1s.f) 

 

 

2.5.2 Product and Quotient 

 

 

 

 

 

 

 

 

Derivation (not required in syllabus) 
 
If  R(x) = A(x) B(x), where A and B are functions of x: 

By differentiation (Product Rule)   
dx

dR
 = B
dx

dA
 + 

dx

dB
A , 

 “Multiplying” dx throughout     dR = dA . B + A . dB 

Dividing by R throughout    
R

dR
 = B
AB

dA
 + 

AB

dB
A  

       
R

dR
 = 
A

dA
 + 
B

dB
 

Replacing d with       
R

RD
 = 
A

AD
 +
B

BD
. 

 

If Y = a × b or Y = a  b, then the consequential uncertainty of Y is given by  

 

Y a b

Y a b

  
    

(61.3 + 0.6) cm 

(21.1+ 0.6) cm 

X = (166 + 2) cm 



    

 

   

 

Example 8 

Given that a = (10.3  0.1) cm, b = (5.6  0.1) cm:  
Find X and its consequential uncertainty, where X = a × b. 
  
 
     X =    57.68 

 

0.1 0.1
0.0276

10.3 5.6

X a b

X a b

  
    

 

  
 

 
 
 

Thus    X = 1.59 = 2  (1 sf) 
Hence X should be written as 
         X = (58 + 2) cm 

 

 
Generally, if a quantity is a function of the product of a few variables, the percentage uncertainty of the 
quantity is the sum of the percentage uncertainties of the variables.  
 
 
 
 
 

    
 
It can be seen that if a variable is raised to a power n, it contributes an uncertainty n times that of the 
variable towards the consequential uncertainty. Thus all high powered variables warrant careful 
measurement with instruments with small absolute uncertainties. 

 

Example 9 

Given that a = (3.04  0.02) g and W = 3a
5
, what is the actual uncertainty in W? 

 

 

 

 

 

 

 

 

 

 

 

 

 

If Y = a
n
 = a  a  a …, then 

Y

Y


 = n

a

a


 

   (0.1/10.3)  + (0.1/5.6) 
  
= 0.00971 + 0.01786 
= 0.0276 

W =778.9 

 
= 5  (0.02/3.04) 
= 0.0329 

W = 0.0329x778.9  
        = 25.6 

        = 30 (1 s.f) 

W = (780 + 30) g
5

 



    

 

   

 

Example 10 

The mass and diameter of a steel ball were used to determine its density. The mass was measured within 
1% and the diameter within 3%. What is the percentage uncertainty in the calculated density of the steel? 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Important note:  

In general, if  α βn .mX A B  or 
α

β

n

m

A
X

B
, where , , n and m are constants, then 

 

  


B
α + β

B

X A

X A
 

 

2.5.3 Quantity with Mathematical Functions  

For mathematical function such as trigonometric function of a reading, we can estimate the error as being 
the difference of the average value with either the smallest or largest possible value. You may need to 
consider the shape of the curve in order to make a meaningful judgement of the absolute uncertainty. 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

General Method: 
 
Δz1 = z – zmin  or  Δz2 = zmax – z 
 
Consider z = sin θ where θ = (48 ± 3)°, 
Calculated value of z = sin 48° = 0.743 
 
Using the smallest and largest possible value of 
θ, 
zmin = sin 45° = 0.707 
zmax = sin 51° = 0.777 
 
z – zmin = 0.743 – 0.707 = 0.036 
zmax – z = 0.777 – 0.743 = 0.034 
 

Choosing the larger of the two: 
Therefore, Δz = 0.036 = 0.04 (1 s.f.) 
 
z ± Δz = 0.74 ± 0.04 
 

 

½ (Max – Min) Method: 
 
Consider z = sin θ where θ = (48 ± 3)°, 
Calculated value of z = sin 48° = 0.743 
 
Using the smallest and largest possible value of 
θ, 
zmin = sin 45° = 0.707 
zmax = sin 51° = 0.777 
 
 
Δz = ½  (zmax   – zmin)  
     = ½ (0.777-0.707)  
     = 0.035 
 
Therefore, Δz = 0.035 = 0.04 (1 s.f.) 
 
z ± Δz = 0.74 ± 0.04 
 

  

= M / (4/3 . r3) 

= M / (4/3 . (D/2)
3

 

= (3/4). (8/). M/D
3

 

=  6M/D
3

 

 

= [0.01 + 3 (0.03)] x100 % 

= 0.1 x100 % 

= 10 % 



    

 

   

 

 
 
 
 
 
Usually the ½ (Max – Min) method will give a reasonable absolute uncertainty value.   The general method 
may lead to a larger absolute uncertainty value. 
 
The general method is usually used when the ½ (Max – Min) fails to give a sensible value. For example, 
consider the above problem z = sin θ where θ = (90 ± 10)°.   
  z = sin θ where θ = (90 ± 10)°.  

Sin  

 

1.0 

90
o

 100
o

 80
o

 

0.985 

 

Zmax = 1.0 

Zmin = sin 80
o

 or sin 100
o

 

          = 0.985 

Z = 1.0 – 0.985 = 0.015 =0.02 

 Z = 1.00 + 0.02  (Wrong) 
 Z = 1.00 – 0.02 (Not  meaningful) 
Hence    0.98 < Z < 1.00 



    

 

   

 

Calculating Uncertainties In A Derived Quantity 
 
The table below shows the formulae used in calculating uncertainties in a derived quantity.  The symbols 

k, m, n and p represent constants (e.g. 4, 2.7 and 6) while A, B and C represents variables. 
 

Addition R = m A + n B R = |m| A + |n| B 

Adding Absolute 
Uncertainties 

Subtraction R = m A – n B R = |m| A + |n| B 

Multiplication by 

Constant 
R = m A R = |m| A 

Power R = k A
m
 

R A
m

R A

 
  

Adding Relative 
Uncertainties 

Product R = k A
m
 x B

n
 

R A B
m n

R A B

  
   

Quotient R = k A
m
 ÷ B

n
 

R A B
m n

R A B

  
   

Other Functions 

For example, 
R = sin x 
R = ln x 

 

R = ½ (Rmax –Rmin)
 

General Method 
Or 

½ (Max – Min) 
method 

 
 
 

Suggested problem-solving strategy for uncertainty problems 

To determine the uncertainty of a physical quantity (A): 
1. Write down the relevant equation relating all physical quantities. 
2. Make (A) the subject of the equation.  
3. Based on the equation, choose the uncertainty formulae that apply. 
4. Convert the equation into an equation for uncertainty. (i.e. remove all constants) 
5. Put in the uncertainty values and calculate the final uncertainty of (A). 
 

In terms of presentation: 

6. Calculate and express the uncertainty (A) to 1 significant figure. 

7.  Write the calculated value (A) to the same place value as the uncertainty. 

 

 

 

 

 

 

 

 



    

 

   

 

Worked Example 11 

Given that T = 2
l

g
, find an expression for the fractional uncertainty of 

(a) T using measured values of l and g. 
(b) g using measured values of T and l.  

 

(a)     5.05.0
2


 glT     

 

   
g

g

l

l

T

T 






5.05.0  

  
(b) Rearranging the equation and making g the subject: 
 

 
22

2

2

4
4  lT
T

l
g 


   

 

  
T

T

l

l

g

g 






2  

 

 

Worked Example 12 
Given the following quantities and their corresponding uncertainties:  
 

 r1 =  2.2  0.1 cm 

 r2 =  3.5  0.1 cm 

 h =  7.2  0.1 cm 

 m =  0.800  0.001 kg 
 
Determine the value of S and its associated uncertainty for each of the cases: 
 

(a)   hrrS 21
2

1
    (b) 

 2

1

2

24

3

rr

m
S





 

 
 

Solution: 

(a) Let R = r1 + r2, then RhS
2

1
 = 20.52    

and   
h

h

R

R

S

S 






 ------- (1) 

  
Consider R = r1 + r2= 5.7     
   

   R = r1 + r2 = 0.1 + 0.1 = 0.2  
 

From (1):   
S

S
 = 

2.7

1.0

7.5

2.0
  = 0.049  

          

     S = 1.005 = 1 (to 1 sf) 
 

 Therefore,   S   S  = (21  1) cm
2 

 



    

 

   

 

Using ½ (Max – Min) Method: 
 
S =  ½ (2.2+3.5)7.2 = 20.52 
 
Smax = ½ (2.3 +3.6)7.3 = 21.535 
 
Smin = ½ (2.1+3.4)7.1 = 19.525 
 

S = ½ (Smax- Smin) =1/2 (21.535-19.525) = 1.005 = 1 (1 s.f) 
 

Therefore,   S   S  = (21  1) cm
2
 

 

(b)  Let R =( r2
2
 – r1

2
) then 

R

m
S

4

3
  = 0.0258  

 
Consider  R = ( r2

2
 – r1

2
) and  let P = r2

2
   =    12.25  and Q=  r1

2
= 4.84 

R = P – Q = 7.41 
 

2

2

2
P r

P r

 
   

and 1

1

2
Q r

Q r

 
  

2

2

2
r

P P
r


    

 
 = 0.7  

and 1

1

2
r

Q Q
r


   = 0.44 

 

R = P + Q = 0.7 +0.44 = 1.14 

 then 
R

m
S

4

3
  = 0.0258 (Use diff method) 

and   
m

m

R

R

S

S 






 = 1.14/7.41   + 0.001/0.800 = 0.154 + 0.00125 = 0.155 

 

S = 0.155 x S = 0.004 

S = (0.026  0.004) kg cm
-2
 

 

Using ½ (Max - Min) Method: 

R

m
S

4

3
  = 0.0258 

 
 Smax  =       3(0.800)    = 0.03046 

              4  (3.4
2
-2.3

2
)  

 
Smin  =       3(0.799)    = 0.02231 

              4  (3.6
2
-2.1

2
)  

 

S = ½ (0.03046 -0.02331) = 0.00408 = 0.004 (1 s.f) 
 

S = (0.026  0.004) kg cm
-2 



    

 

   

 

Example 13  (2012 P1Q2) 

 
The equation connecting object distance u, image distance v and focal length f for a lens is  
 

 
1 1 1

u v z
   

 
A student measures values of u and v, with their associated incertainties.  These are 

Given: u = (50  3) mm and v = (200  5) mm. 
He calculates the value of f as 40 mm.  What is the uncertainty in this value? 
 

Using ½ (Max – Min) Method: 

1 1 1 1 1

50 200

40.0 mm

f u v

f

   



 

 

min min min

min

min

1 1 1

1 1 1

47 195

37.9 mm

f u v

f

f

 

 



 

 

 

max max max

max

max

1 1 1

1 1 1

53 205

42.1 mm

f u v

f

f

 

 



 

 

   
   

  

1 1
max min2 2

( ) (42.1 37.9) 2.1 mm

2.1 mm 2 mm (1 s.f.)

f f

f
 

 f = (40 ± 2) mm 

 



    

 

   

 

 

3. Scalars and Vectors 

 
1. DEFINITIONS OF SCALAR AND VECTOR QUANTITIES 

Scalar quantities are physical quantities that can be represented by a magnitude only.  They do not have 

a direction associated with them. 

 

Vector quantities are physical quantities that can be represented by a magnitude and a direction in 

space. 

 

Examples of scalar and vector quantities 

Scalar Quantity Vector Quantity 

distance displacement 

speed velocity 

temperature acceleration 

energy force 

power momentum 

mass weight 

density moment 

 

 

Some mathematical operations involving scalars and vectors 
 

(a) scalar  (or ) scalar gives a scalar quantity 
 

(b) vector  (or ) scalar gives a vector quantity  

 For e.g., weight = mass  g, momentum = m  v 
 

(c) vector  vector can give:  
  
 - a scalar quantity  

 This type of multiplication is called the scalar (dot) product of two vectors and is in your H2 
Mathematics syllabus.   

 For e.g., work done (scalar) = force (vector)  displacement (vector). 
  

- a vector quantity  

 This type of multiplication is called the vector (cross) product and might be something you would 
learn in university. 

Vector notation 

A vector A will be represented as A


. 
 
The magnitude of vector A will be represented 

as A


 or A.  

 

 



    

 

   

 

2. ADDITION OF VECTORS 
There are in general two methods of vector addition – Triangle Law and Parallelogram Law.  

We will focus on using the Triangle Law for the ‘A’ Levels. 

 

 

 

Note: Addition is commutative, i.e. ABBA


 . 

 

TRIANGLE LAW PARALLELOGRAM LAW 

 

 RULE:  

Head of one to Tail of the other and the 

Resultant is from the tail of the first to the 
head of the second. 

 

 

 RULE:  

Tail to Tail. Then draw a parallelogram in the 
following way. 

 

 
 

      R 
 
          B 
 

            A  
 

 
 
 

                    B         R 
 
 

                                A 

 Useful for subtraction of vectors. 
 

 Useful for addition of more than two 
vectors (polygon addition). 

 

 Useful for giving an approximate 
indication of the direction of resultant. 

 

 Useful for perpendicular vectors. 
 

 

R A B     
 

Magnitude and direction of R can be found by using cosine rule or sine rule. 
 



    

 

   

 

Addition of vectors in the same direction 

If the two vectors are in the same direction, the resultant force is in the same direction.  

Its magnitude is the sum of the magnitudes of the two, refer to the figure below, i.e. R = A + B. 

 

 

 

 

Addition of vectors in opposite or anti-parallel directions 

If two vectors are acting in the opposite direction, the magnitude of their sum is the difference between the 

magnitudes of the two vectors, refer to the figure below, i.e. R = A – B. Note that the direction of the 

resultant force is the same as the direction of the vector with a larger magnitude.  

 

 

 

 

 

 

Addition of vectors in two dimensions 

Two or more coplanar vectors ( A


, B


, C


, D


, etc.) can be added by using the parallelogram method or 

“head to tail” method (preferred). Please refer to the figures below.  

 

 

 

 

 
 

 

 

 

 

Polygon Addition of Vectors 

 Polygon addition is used when there are more than two vectors to be added. This is a mere 

extension of the triangular addition.  

 To add several vectors, just place the tail of one vector 

to the head of another vector consecutively. The 

resultant is the vector which joins from the tail of the first 

vector to the head of the last vector. 

 If the polygon is closed, the resultant is zero. 

A B 

R = A+ B 

A 

B 

R = A – B  

A


 B


 

A


 

B


 

BAR


  

 

Zero resultant 

C


 

A


 

B


 

D


 

 

DCBAR

  

B

  

A

  

C

  

D

  



    

 

   

 

 

 

 

 

 

 

 

 
 
 

   
 

 

  

  
 
 

 

 

 

 

 

 

 

 

 

Example 1: 
Find the resultant of the following forces: 
FA = 5.00 N along the east and FB = 3.00 N along the north. 

Example 2: 
Two forces act on a body. One force has magnitude of 2.00 N acting in the easterly direction, the other 
4.00 N acting in the direction 30

o
 East of North. Find the resultant of these two forces. 

Solution: 

FR = (FA
2
+FB

2
) 

      = ( 5.00
2
+3.00

2
) 

      = 5.83 N  

tan  = FB/FA = 3.00/5.00  = 0.600 

 = 30.96
o
 = 31

o
  measured anti-clockwise from the eastward direction. 

Solution: 

 Using cosine rule:   
R

2
 = 4.00

2
+2.00

2
-2x4.00x2.00cos 120

o
 

R = 5.29 N 
 
Using sine rule: 

4/sin  = R/sin 120
o
 

 = 40.9
o
  measured anti-clockwise from the easterly direction. 

 

2 N 

4 N 
R 30˚ 

 

FA 

FB FR 

Ө 



    

 

   

 

3. SUBTRACTION OF VECTORS 

 Subtraction is a special form of addition.  

 To subtract vector A


 from B


 is actually to add vector B


  to vector A


 ,  

 i.e.  ABAB


   

 

 

 

 

 

 

Hence subtracting a vector is equivalent to adding the negative of the vector.  The negative vector has the 

same magnitude as the original (positive) vector but is rotated 180.  

 

Applications of Vector Subtraction  

Change in vector 

If a vector V


 changes either its magnitude or direction (or both), the change in V


,  V


  is defined as 

initialfinal VVV


 where initialV  is the initial vector and finalV is the final vector. 

The above vector equation can be re-written as: 

( )final initialV V V     

Now the change in vector V  can be found by the vector addition of the vector finalV and ( )initialV  as 

shown in the figure below. 

 

 

 

 

 

 

Example 3: 
A car is initially travelling 12 ms

-1
 due east. What is the change in velocity if its final velocity is 

 

(a)  16 ms
-1
 due east?  [4 ms

-1
  due east] 

 

(b)   9 ms
-1
 due east ?   

 v = 9 - (12)  = - 3ms
-1
 = 3ms

-1 
due west 

 

(c)  10 ms
-1
 due west? 

v = -10 - (12)  = - 22ms
-1
 = 22 ms

-1 
due west 

 
 

B


 

A


 

initialV


 finalV


 finalV


 

initialV


  

V


  

AB


  

B


 

A


  



    

 

   

 

 

(d)  16 ms
-1
 due south? 

  

 

V = (16
2
+12

2
) 

      = 20 ms
-1
 

 

Tan  = 16/12 

 = 36.9
o
 west of south 

 

 

 

4. RESOLVING VECTORS INTO TWO PERPENDICULAR COMPONENTS 

The vector V


 in the figure below is the resultant of two perpendicular vectors, xV


 and yV


 along the x and 

y-axis respectively.  

We can represent any vector lying in the xy-plane as the sum of a vector parallel to the x-axis and a a 

vector parallel to the y-axis. In the figure below, these two vectors are labelled xV


 and yV


; they are called 

the component vectors of vector V


, and their vector sum is equal to V


. 

Vx (equal to the magnitude of xV


) is known as the x-component of V


 and Vy (equal to the magnitude of 

yV


) is known as the y-component of V


.  

 

 

 

 

 

 

 

From the figure, sin θ = Vy / V.  

Thus, we have Vy = V sin θ.  

Similarly, cos θ  = Vx  / V and we have Vx = V cos θ. 

The magnitude of V


 is given by 
22

yx VVV 


. 

The direction of V is given by 
x

y

V

V
tan . 

Note: When we resolve the vector V


 into its perpendicular component vectors xV


 and yV


, 

 DOTTED ARROW LINES are used to represent xV


 and yV


. 

 

x 

y 

V


 

Vx 

Vy 

θ 

 

Vi= 12 ms
-1 

Vf =16 ms
-1 

-Vi
 

Vf 
 V

 


 



    

 

   

 

Example 4: 
In the diagram below, find the resultant of the 3 forces. 

 

 

    

 

 

 

 

  Taking upwards and right as positive, 
       
 
  
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Solution: 

Fy =   500 sin 45
o
 + 600 sin 60

o
 – 300 sin 30

o
 

         = 723.2N 
 

Fx =  -600 cos 60
o
 + 500 cos 45

o
   + 300 cos 30

o
 

         = 313.4 N 

Resultant  F =  [(723.2)
2
 + (313.4)

2
] = 788 N 

 

 

 

 

600 N 

Fy 

500 N 

45
o
 60

o
 

30
o
 

y 

x 

300 N 

Fx 

F 

 

Tan θ =Fy/Fx 

        = 723.2/313.4 

Θ = 66.6
o
  

Measured anti-clockwise from the x-axis 

 



    

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

Example 6: 
An object of mass 10 kg lies on a slope that is inclined at 30° to the horizontal. Find the components of 

the weight of the object along and perpendicular to the slope. 

Solution: 

T2 sin30o = W
T2 = W/sin 30o = 2W

T1 = T2cos 30o

= 2W 3/2
= 3W or 1.73 W

 

Solution: (draw a diagram) 

Step 1 - Draw the components of the vector parallel and perpendicular to the plane. 

Step 2 - Indicate the angle that one of the components makes with the original vector. 

 (You should be able to identify the angle immediately without much calculation after some 

practice). 

Step 3 - Calculate the magnitude of each component. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

30
o
 

Example 5: 
In the diagram below, a body S of weight W hangs vertically by a thread tied at Q to the string 
PQR. If the system is in equilibrium, what is the tension in terms of W in the section PQ? 

 

30.0
o
 

S 

P 

R 

Q 

90.0
o
 

T1 

T2 

W 

Weight along the slope = mgsin   

= 10x9.81sin 30
o

 =49.1 N   

Weight perpend. to the slope = mgcos   

= 10x9.81cos 30
o

                  
= 85.0 N   

mg 

mgsin 

mgcos 



    

 

   

 

Relative Velocity 

 

If A and B are two moving objects, then the apparent (relative) velocity of B when observed from A is 

called the velocity of B relative to A, i.e. 

 

Velocity of B relative to A= Velocity of B – velocity of A 

VBA = VB - VA 

 

The velocity of B relative to A may be found by using a vector triangle. 

 

 

 

 

 

 

 

Example 7 

 

Suppose car A is travelling north at a constant speed of 80 kmh
-1
 and a truck B is approaching the car in 

opposite direction at a constant speed of 100 kmh
-1
.  What is the truck’s velocity relative to car A? 

 

Let velocity of truck B = VB 

Let the velocity of car A = VA 

 

Taking northward as positive direction 

Velocity of truck relative to car = VB – VA 

 =  -100 – 80 

= -180 kmh
-1
 

 

The truck is moving at 180 kmh
-1
 south relative to car. 

 

 

Example 8 

 

A car is travelling due north on a straight road at 90 kmh
-1
. The car is observed by the driver pf a lorry 

travelling north-east on another road at 60 kmh
-1
. Find the velocity of car relative to the lorry.     

 
Let the speed of car relative to the lorry = Vc = Vc-Vl 
 
Using cosine rule Vlc

2
 = 90

2 
+60

2
 -2x90x60.cos 45

o
 

Vcl = 63.7 kmh
-1
 

N 

B 

A 

B 

A 

VB 

VA 

VB 

-VA 

VB- VA 

Vector diagram 

Vc = 90 kmh
-1
 

car lorry 

Vl = 60 kmh
-1
 

45 
o
 

Vc  

Vc - Vl 

-Vl  

Vector diagram 

45 
o
 

Calculation of direction: 
Sin θ /Vl = sin 45

o
/ Vcl 

Sin θ = (sin45
o
/63.7 )  x 60 = 0.666 

Θ=41.8
o
 anti- clockwise from North 

 


