H2 Further Mathematics

2023 JPJC JC2 Prelim Examination Paper 2 Solutions

1	
	$\sqrt{X_{n+2}} = \frac{X_{n+1}}{\left(X_n\right)^2}$
	$\frac{1}{2}\ln\left(X_{n+2}\right) = \ln\left(X_{n+1}\right) - 2\ln\left(X_{n}\right)$
	$\ln\left(X_{n+2}\right) = 2\ln\left(X_{n+1}\right) - 4\ln\left(X_{n}\right)$
	Let $Y_n = \ln(X_n)$, we have
	$Y_{n+2} = 2Y_{n+1} - 4Y_n$
	$Y_{n+2} - 2Y_{n+1} + 4Y_n = 0$
	Auxiliary equation:
	$m^2 - 2m + 4 = 0$
	$m = \frac{2 \pm \sqrt{2^2 - 4(4)}}{2}$
	$=1\pm\sqrt{3}i$
	$=2e^{\pm\frac{\pi}{3}i}$
	Hence, general solution,
	$Y_n = 2^n \left[A \cos \frac{n\pi}{3} + B \sin \frac{n\pi}{3} \right]$
	$\ln\left(X_{n}\right) = 2^{n} \left[A\cos\frac{n\pi}{3} + B\sin\frac{n\pi}{3}\right]$
	$X_n = e^{2^n \left[A \cos \frac{n\pi}{3} + B \sin \frac{n\pi}{3} \right]}$

2				
(a)	$I_n = \int_{-1}^{1} (1 - x^2)^n dx$			
	$= \left[x(1-x^2)^n\right]_{-1}^1 - \int_{-1}^1 -2nx^2(1-x^2)^{n-1} dx$			
	$=-2n\int_{-1}^{1}-x^{2}\left(1-x^{2}\right)^{n-1}dx$ $u=\left(1-x^{2}\right)^{n} \frac{dv}{dx}=1$ $du=2xy\left(1-x^{2}\right)^{n-1}$			
	$= -2n \int_{-1}^{1} (-1+1-x^2) (1-x^2)^{n-1} dx$ $= -2xn(1-x^2)^{n-1} \qquad v=x$			
	$=-2n\int_{-1}^{1}(-1)(1-x^{2})^{n-1}dx-2n\int_{-1}^{1}(1-x^{2})(1-x^{2})^{n-1}dx$			
	$=2n\int_{-1}^{1} (1-x^2)^{n-1} dx - 2n\int_{-1}^{1} (1-x^2)^n dx$			
	$I_n = 2n I_{n-1} - 2n I_n$			
	$\left(1+2n\right)I_n = 2n\ I_{n-1} \text{(Shown)}$			
(b)	From above, $(2n+1)I = 2nI$			

(b) From above,
$$(2n+1)I_n = 2n I_{n-1}$$

$$I_n = \frac{2n}{2n+1} I_{n-1}$$

$$I_{\frac{3}{2}} = \frac{3}{4} I_{\frac{1}{2}}$$

$$I_{\frac{3}{2}} = \frac{3}{4}I_{\frac{1}{2}}$$

$$= \frac{3}{4}\left(\frac{1}{2}I_{-\frac{1}{2}}\right)$$

$$= \frac{3}{8}\int_{-1}^{1}\frac{1}{\sqrt{1-x^2}}dx$$

$$= \frac{3}{8}\left[\sin^{-1}x\right]_{-1}^{1}$$

$$= \frac{3}{8}\left[\frac{\pi}{2} - \left(-\frac{\pi}{2}\right)\right]$$

$$= \frac{3\pi}{8}$$

$$= \frac{3\pi}{8}$$
(c) $I_{\frac{3}{2}} = \int_{-1}^{1} (1 - x^2)^{\frac{3}{2}} dx$

Using Simpson's rule with 5 ordinates, let $f(x) = (1-x^2)^{\frac{3}{2}}$

X	-1	-0.5	0	0.5	1
f(x)	0	$\frac{3\sqrt{3}}{8}$	1	$\frac{3\sqrt{3}}{8}$	0

$$I_{\frac{3}{2}} = \int_{-1}^{1} (1 - x^{2})^{\frac{3}{2}} dx$$

$$\approx \frac{1}{3} (0.5) \left[0 + 4 \left(\frac{3\sqrt{3}}{8} \right) + 2(1) + 4 \left(\frac{3\sqrt{3}}{8} \right) + 0 \right]$$

$$= \frac{1}{6} (2 + 3\sqrt{3})$$

$$\frac{3\pi}{8} \approx \frac{1}{6} \left(2 + 3\sqrt{3} \right)$$

$$\pi \approx \frac{4}{9} \Big(2 + 3\sqrt{3} \Big)$$

3		
<u>J</u>	y	
	P R X θ R	x
	Let X , Q and R be the points as shown in the diagram.	

Note that at any time, $OQ = PQ = r\theta$

x-coordinate of $P = OQ - PR = r\theta - r\sin\theta = r(\theta - \sin\theta)$

y-coordinate of $P = XQ - XR = r - r \cos \theta = r(1 - \cos \theta)$

(a)

When y is maximum,

 $\cos \theta = -1$

$$\theta = \pi$$

 $x = r(\pi - \sin \pi) = \pi r$ and $y = r(1 - \cos \pi) = 2r$

Hence, the coordinate of the maximum point is $(\pi r, 2r)$.

(b)
$$x = r(\theta - \sin \theta) \Rightarrow \frac{dx}{d\theta} = r(1 - \cos \theta)$$

 $y = r(1 - \cos \theta) \Rightarrow \frac{dy}{d\theta} = r \sin \theta$

Surface area of revolution = $2\pi \int_0^{2\pi} y \sqrt{\left(\frac{dx}{d\theta}\right)^2 + \left(\frac{dy}{d\theta}\right)^2} d\theta$

$$= 2\pi \int_{0}^{2\pi} r(1-\cos\theta) \sqrt{r^{2}(1-\cos\theta)^{2} + r^{2}\sin^{2}\theta} \, d\theta$$

$$= 2\pi r^{2} \int_{0}^{2\pi} (1-\cos\theta) \sqrt{1-2\cos\theta + \cos^{2}\theta + \sin^{2}\theta} \, d\theta$$

$$= 2\pi r^{2} \int_{0}^{2\pi} (1-\cos\theta) \sqrt{2-2\cos\theta} \, d\theta$$

$$= 2\sqrt{2}\pi r^{2} \int_{0}^{2\pi} (1-\cos\theta)^{\frac{3}{2}} \, d\theta$$

$$= 2\sqrt{2}\pi r^{2} \int_{0}^{2\pi} (2\sin^{2}\frac{\theta}{2})^{\frac{3}{2}} \, d\theta$$

$$= 8\pi r^{2} \int_{0}^{2\pi} \sin^{3}\frac{\theta}{2} \, d\theta \quad \text{(Shown)}$$
Exact Area = $8\pi r^{2} \int_{0}^{2\pi} \sin^{3}\frac{\theta}{2} \, d\theta$

$$= 8\pi r^{2} \int_{0}^{2\pi} \sin\frac{\theta}{2} \left(1-\cos^{2}\frac{\theta}{2}\right) \, d\theta$$

$$= 8\pi r^{2} \int_{0}^{2\pi} \left(\sin\frac{\theta}{2} - \sin\frac{\theta}{2}\cos^{2}\frac{\theta}{2}\right) \, d\theta$$

$$= 8\pi r^{2} \left[-2\cos\frac{\theta}{2} + 2 \cdot \frac{\cos^{3}\frac{\theta}{2}}{3}\right]_{0}^{2\pi}$$

$$= 8\pi r^{2} \left[\left(2-\frac{2}{3}\right) - \left(-2 + \frac{2}{3}\right)\right]$$

$$= \frac{64}{3}\pi r^{2} \text{ units}^{2}$$

4					
(a)	$t\frac{\mathrm{d}y}{\mathrm{d}t} + ky = t$				
	$\frac{\mathrm{d}y}{\mathrm{d}t} + \frac{k}{t}y = 1$				
	$\mathbf{u}\iota$				
	Integrating Factor:				
	$e^{\int_{t}^{k} dt} = e^{k \ln(t)}$				
	$=e^{\ln(t)^k}$				
	$=t^k$				
	Multiplying the DE by the IF,				
	$t^{k} \frac{\mathrm{d}y}{\mathrm{d}t} + t^{k} \frac{k}{t} y = t^{k}$				
	$\int_{0}^{t} dt dt dt = \int_{0}^{t} dt dt$				
	$\frac{\mathrm{d}}{\mathrm{d}t} \Big[t^k y \Big] = t^k$				
	\mathbf{u}_{l}				
	$t^k y = \int t^k dt \qquad \text{(Since } k \neq -1\text{)}$				
	$t^k y = \frac{t^{k+1}}{k+1} + C$				
	$k \cdot y = k + 1$				
	$y = \frac{t}{t_{k+1}} + Ct^{-k}$				
	k+1				
	Given that $y = 0$ when $t = 1$,				
	$0 = \frac{1}{l_{k+1}} + C(1)^{-k}$				
	$\kappa+1$				
	$C = -\frac{1}{k+1}$				
	K 11				
	Hence, $y = \frac{t}{k+1} - \frac{1}{k+1}t^{-k} = \frac{1}{k+1}(t-t^{-k})$				
(b)	When $k=2$,				
	$t\frac{\mathrm{d}y}{\mathrm{d}t} + 2y = t$				
	ui				
	$\frac{\mathrm{d}y}{\mathrm{d}t} = \frac{t - 2y}{t} = 1 - \frac{2y}{t} = \mathrm{f}(t, y)$				
	Step size, $h = 0.1$				
	$t_{n+1} = t_n + 0.1, \ f(t_n, y_n) = 1 - \frac{2y_n}{t}$				
	t_n				
	$y_{n+1} = y_n + 0.1f(t_n, y_n) = y_n + 0.1\left(1 - \frac{2y_n}{t_n}\right)$				
	$t_0 = 1, \ y_0 = 0$				
	$t_1 = 1.1, \ y_1 = y_0 + 0.1 \left(1 - \frac{2y_0}{t_0} \right) = 0 + 0.1 \left(1 - \frac{2(0)}{1} \right) = 0.1$				

$t_2 = 1.2, \ y_2 = y_1 + 0.1 \left(1 - \frac{2y_1}{t_1} \right) = 0.1 + 0.1 \left(1 - \frac{2(0.1)}{1.1} \right) = 0.181818$
77 0 105 (2.3

Hence, $y \approx 0.182$ (3sf)

(c) When k = 2, $y = \frac{1}{3}(t - t^{-2})$

For $t \ge 1$, the solution curve is **increasing and concave downwards**, the line segments used in Euler's method lies above the curve, this results in an **overestimate** of the exact value of y when t = 1.2.

5					
(a)	$d^2v = dv$				
	$\frac{d^2y}{dx^2} - 2\sqrt{3}\frac{dy}{dx} + 4y = 0$				
	Auxiliary equation is				
	$m^2 - 2\sqrt{3} m + 4 = 0$				
	$m = \frac{2\sqrt{3} \pm \sqrt{\left(2\sqrt{3}\right)^2 - 4(1)(4)}}{2}$				
	$m = \frac{\sqrt{\sqrt{2}}}{2}$				
	$2\sqrt{3} + \sqrt{-4}$				
	$= \frac{2\sqrt{3} \pm \sqrt{-4}}{2}$				
	_				
	$= \frac{2\sqrt{3} \pm 2i}{2}$				
	$=\sqrt{3}\pm i$				
	$= \sqrt{3} \pm 1$ General solution is				
	y = f(x)				
	$= e^{x\sqrt{3}} \left(A\cos x + B\sin x \right)$				
	$f(0) = 0 \Rightarrow 0 = e^{0} (A\cos 0 + 0)$				
	0 = A				
	$\therefore f(x) = Be^{x\sqrt{3}} \sin x$				
	、				
	$f'(x) = Be^{x\sqrt{3}} (\cos x) + B\sqrt{3} e^{x\sqrt{3}} \sin x$				
	$f'(0) = 1 \Rightarrow 1 = Be^{0}(\cos 0) + 0$				
	1 = B				
	$\therefore f(x) = \underline{e^{x\sqrt{3}}\sin x}$				
(b)	Let P be the statement " $f^{(n)}(x) = 2^n e^{x\sqrt{3}} \sin\left(x + \frac{1}{x}\right)$ " for all $x \in \mathbb{Z}^+$				
	Let P_n be the statement " $f^{(n)}(x) = 2^n e^{x\sqrt{3}} \sin\left(x + \frac{1}{6}n\pi\right)$ " for all $n \in \mathbb{Z}^+$				
	LHS of $P_1 = f'(x)$				
	$d_{x\sqrt{3}}$.				
	$= \frac{\mathrm{d}}{\mathrm{d}x} \mathrm{e}^{x\sqrt{3}} \sin x$				
	$= e^{x\sqrt{3}}\cos x + \sqrt{3}e^{x\sqrt{3}}\sin x$				
	$= e^{x\sqrt{3}} \left(\sqrt{3} \sin x + \cos x \right)$				
	, , ,				
	$= e^{x\sqrt{3}} \left 2\sin\left(x + \tan^{-1}\frac{1}{\sqrt{3}}\right) \right $ (<i>R</i> -formula)				
	$\sqrt{3}$				
	$= 2e^{x\sqrt{3}}\sin\left(x+\frac{1}{6}\pi\right)$				
	$-2e^{-\sin\left(\frac{x+-n}{6}\right)}$				
	$=$ RHS of P_1				
	$\therefore P_1$ is true.				
	Assume that P_k is true for some $k \in \mathbb{Z}^+$, i.e., $\mathbf{f}^{(k)}(x) = 2^k e^{x\sqrt{3}} \sin\left(x + \frac{1}{6}k\pi\right)$.				
<u> </u>					

We want to prove that P_{k+1} is true, i.e., $f^{(k+1)}(x) = 2^{k+1} e^{x\sqrt{3}} \sin \left| x + \frac{1}{6} (k+1) \pi \right|$.

LHS of
$$P_{k+1} = \frac{\mathrm{d}}{\mathrm{d}x} \mathbf{f}^{(k)}(x)$$

$$= \frac{\mathrm{d}}{\mathrm{d}x} \left[2^k e^{x\sqrt{3}} \sin\left(x + \frac{1}{6}k\pi\right) \right]$$

$$= 2^k \left[\sqrt{3} e^{x\sqrt{3}} \sin\left(x + \frac{1}{6}k\pi\right) + e^{x\sqrt{3}} \cos\left(x + \frac{1}{6}k\pi\right) \right]$$

$$= 2^k e^{x\sqrt{3}} \left[\sqrt{3} \sin\left(x + \frac{1}{6}k\pi\right) + \cos\left(x + \frac{1}{6}k\pi\right) \right]$$

$$= 2^k e^{x\sqrt{3}} \left[2\sin\left(x + \frac{1}{6}k\pi + \tan^{-1}\frac{1}{\sqrt{3}}\right) \right] \quad (R\text{-formula})$$

$$= 2^k e^{x\sqrt{3}} \left[2\sin\left(x + \frac{1}{6}k\pi + \frac{1}{6}\pi\right) \right]$$

$$= 2^{k+1} e^{x\sqrt{3}} \sin\left[x + \frac{1}{6}(k+1)\pi\right]$$

$$= RHS \text{ of } P_{k+1}$$

 $\therefore P_k$ is true $\Rightarrow P_{k+1}$ is true

Since (1) P_1 is true, and (2) P_k is true $\Rightarrow P_{k+1}$ is true,

 \therefore by mathematical induction, P_n is true for all $n \in \mathbb{Z}^+$.

(c) $y = e^{x\sqrt{3}} \sin x, \ 0 \le x \le 3\pi.$

(d) (i) Given that the positive roots of the equation $f(x) = \frac{1}{x}$ are denoted by $\alpha_1, \alpha_2, ..., \alpha_n, ...$, in increasing order.

[Refer to the above graphs of $y = f(x) = e^{x\sqrt{3}} \sin x$ and $y = \frac{1}{x}$, and look for the intersection points at $x = \alpha_1, \alpha_2, \alpha_3, \alpha_4$.]

$$f(x) = \frac{1}{x}$$

$$e^{x\sqrt{3}} \sin x = \frac{1}{x}$$

$$e^{x\sqrt{3}} \sin x - \frac{1}{x} = 0$$
Let
$$g(x) = e^{x\sqrt{3}} \sin x - \frac{1}{x}$$

$$g'(x) = f'(x) + \frac{1}{x^2}$$

$$= 2e^{x\sqrt{3}} \sin\left(x + \frac{1}{6}\pi\right) + \frac{1}{x^2}$$
Let
$$\alpha_0 = 0.6$$

$$\alpha_1 = \alpha_0 - \frac{g(x_0)}{g'(x_0)}$$

$$= 0.6 - \frac{g(0.6)}{g'(0.6)}$$

$$= 0.60894 (5 \text{ sf})$$

$$= \underline{0.609} (3 \text{ sf})$$

(ii)
$$e^{x\sqrt{3}}\sin x = \frac{1}{x}$$

When n is large, α_n is large (: $\alpha_1, \alpha_2, ..., \alpha_n, ...$, are in increasing order), then

$$\frac{1}{\alpha_n} \approx 0$$

$$e^{\alpha_n \sqrt{3}} \sin \alpha_n = \frac{1}{\alpha_n} \approx 0$$

 $\sin \alpha_n \approx 0 \quad (\because e^{\alpha_n \sqrt{3}} \text{ will be large})$
 $\alpha_n \approx k\pi$, where $k \in \mathbb{Z}^+$ ($\because \alpha_n$ is positive)

Hence a first approximation to α_n when n is large will be $(n-1)\pi$.

Section B: Probability and Statistics [50 marks]

6				
(a)	The bacteria occurs independently of each other.			
	Or			
	The average number of bacteria per ml of drugs remains constant.			
(b)	Let A_k = the number of bacteria in k ml of drug A			
	$A_1 \sim \text{Po}(0.5)$			
	$A_k \sim \text{Po}(0.5k)$			
	$P(A \le 3) < 0.02$			
	From GC,			
	When $k = 18$, $P(A \le 3) = 0.0212 > 0.02$			
	When $k = 19$, $P(A \le 3) = 0.0149 < 0.02$			
	When $k = 20$, $P(A \le 3) = 0.0103 < 0.02$			
	Hence, the least integer $k = 19$.			
(c)	Let B_n = the number of bacteria in n ml of drug B			
	and $B_1 \sim \text{Po}(0.8)$			
	Let $C =$ the number of bacteria in 2.5 ml of the drug mixture			
	$C = A_{1.4} + B_{1.1} \sim \text{Po}(0.5 \times 1.4 + 0.8 \times 1.1) = \text{Po}(1.58)$			
	$P(C \ge 5) = 1 - P(C \le 4)$			
	= 0.022596			
	≈ 0.0226			

7	
	$\overline{x} = \frac{10.56}{8} = 1.32$ $\overline{y} = \frac{12.39}{10} = 1.239$
	$\left s_{X}^{2} = \frac{1}{7} \left(14.1775 - \frac{10.56^{2}}{8} \right) = 0.034043 \text{ (5 sf)} $ $s_{Y}^{2} = \frac{1}{9} \left(15.894 - \frac{12.39^{2}}{10} \right) = 0.06031$
	Pooled estimate of σ^2 , $s^2 = \frac{7(0.034043) + 9(0.06031)}{8 + 10 - 2}$
	$= 0.22095^2 (5 sf)$
	Let μ_X kg and μ_Y kg be the population mean mass of the ducks on lake A and lake B
	respectively.
	$H_0: \mu_X - \mu_Y = 0$
	$H_1: \mu_X - \mu_Y > 0$
	Assumption
	The population variances are equal.
	Under H_0 , test statistic $T = \frac{\overline{X} - \overline{Y} - 0}{S\sqrt{\frac{1}{8} + \frac{1}{10}}} \sim t(16)$
	$\alpha = 0.1$
	$t = \frac{1.32 - 1.239}{0.22095\sqrt{\frac{1}{8} + \frac{1}{10}}} = 0.77286 \text{ (5 sf) (from GC)}$
	p -value = $P(T \ge 0.77286) = \underline{0.225}$ (3 sf) (from GC)
	Since p-value = $0.225 > \alpha = 0.1$, we do not reject H_0 at the 10% level of significance
	and conclude there is <u>insufficient evidence</u> that the scientist's claim is justified (or: that the ducks on lake A are heavier on average than the ducks on lake B).

8						
(a)	The expected frequency (E_{ij}) is calculated as follow:					
		Supplier	Poor	Fair	Good	Total
		P	$\frac{180 \times 30}{240} = 22.5$	45	112.5	180
		Q	7.5	15	37.5	60
		Total	30	60	150	240

(b) Let the number of items rated Poor from Supplier *P* be *m*. Hence, we have

Supplier	Poor	Fair	Good	Total
P	m	60 – m	120	180
Q	30 – m	m	30	60
Total	30	60	150	240

$$\chi^{2}_{CALC} = \sum_{i} \sum_{j} \frac{\left(O_{ij} - E_{ij}\right)^{2}}{E_{ij}}$$

$$= \frac{\left(m - 22.5\right)^{2}}{22.5} + \frac{\left(60 - m - 45\right)^{2}}{45} + \frac{\left(120 - 112.5\right)^{2}}{112.5}$$

$$+ \frac{\left(30 - m - 7.5\right)^{2}}{7.5} + \frac{\left(m - 15\right)^{2}}{15} + \frac{\left(30 - 37.5\right)^{2}}{37.5}$$

$$= \frac{\left(m - 22.5\right)^{2}}{22.5} + \frac{\left(15 - m\right)^{2}}{45} + \frac{\left(7.5\right)^{2}}{112.5}$$

$$+ \frac{\left(22.5 - m\right)^{2}}{7.5} + \frac{\left(m - 15\right)^{2}}{15} + \frac{\left(7.5\right)^{2}}{37.5}$$

$$= \frac{4\left(m - 22.5\right)^{2}}{22.5} + \frac{4\left(15 - m\right)^{2}}{45} + \frac{4\left(7.5\right)^{2}}{112.5}$$

$$6.4 = \frac{8\left(m - 22.5\right)^{2} + 4\left(15 - m\right)^{2}}{45} + 2$$

$$4.4(45) = 8(m-22.5)^{2} + 4(15-m)^{2}$$

$$12m^2 - 480m + 4752 = 0$$

$$m^2 - 40m + 396 = 0$$

$$m = 18$$
 or $m = 22$

Since there are less than 20 items that are rate poor for both suppliers, m = 18.

Hence,

Supplier	Poor	Fair
P	18	42
Q	12	18

(c) H_0 : Quality rating is independent of the supplier.

H₁: Quality rating is dependent of the supplier.

Under H₀,

O_{ij}	Poor	Fair	Good	Total
P	18	42	120	180
Q	12	18	30	60
Total	30	60	150	240

E_{ij}	Poor	Fair	Good	Total	
P	22.5	45	112.5	180	
Q	7.5	15	37.5	60	
Total	30	60	150	240	

Degree of freedom = (2-1)(3-1) = 2

$$\alpha = 0.05$$

$$\chi^2_{CALC} = 6.4$$

p-value = 0.0408

Since p-value = $0.0408 < \alpha$, we reject H_0 . There is **sufficient evidence** at the 5% level of significance to conclude that the quality rating is dependent of the supplier.

9 (a)
$$f(x) = \begin{cases} 200(x-0.1), & 0.1 \le x \le 0.2, \\ 0, & \text{otherwise.} \end{cases}$$

$$P(X \le x) = \int_{0.1}^{x} 200(t-0.1)dt$$

$$= 200 \left[\frac{(t-0.1)^2}{2} \right]_{0.1}^{x}$$

$$= 100[(x-0.1)^2 - (0.1-0.1)^2]$$

$$= 100(x-0.1)^2$$
Hence,
$$F(x) = \begin{cases} 0, & x < 0.1, \\ 100(x-0.1)^2, & 0.1 \le x \le 0.2, \\ 1, & x > 0.2 \end{cases}$$
(b)
$$G(y) = P(Y \le y)$$

$$= \left[P(X \le y) \right] \left[P(X \le y) \right]$$

$$= \left[F(y) \right]^2 \quad \text{(Shown)}$$
(c)
$$G(y) = \left[F(y) \right]^2$$

$$= \left[100(y-0.1)^3 \right]^2$$

$$= 10000(4)(y-0.1)^3$$

$$= 40000(y-0.1)^3$$

$$E(Y) = \int_{0.1}^{0.2} yg(y) dy$$

$$= \int_{0.1}^{0.2} 40000y(y-0.1)^3 dy$$

$$= 0.18$$
(d) For $0.14 \le x \le 0.16$,
$$E_t = 200 \left[F(0.16) - F(0.14) \right]$$

$$= 200 \left[1-100(0.18-0.1)^2 \right]$$

$$= 72$$

х	0.1 - 0.12	0.12 - 0.14	0.14 - 0.16	0.16 - 0.18	0.18 - 0.2
E_i	8	24	40	56	72

(e) H_0 : *X* has a probability density function as stated above.

 H_1 : X does not have a probability density function as stated above.

Under H₀,

Х	0.1 - 0.12	0.12 - 0.14	0.14 - 0.16	0.16 - 0.18	0.18 - 0.2
O_i	14	18	45	58	65
E_i	8	24	40	56	72

Degree of freedom = 5 - 1 = 4

 $\alpha = 0.05$

Using GC, $\chi^2_{CALC} = 7.38$

p-value = 0.117

Since p-value = 0.117 > α , we do not reject H_0 . There is insufficient evidence at the 5% level of significance to conclude that the greengrocer's claim is not valid. i.e. The greengrocer's claim may be valid.

10											
(a)	Let X kg an	d Y kg be	the pre-t	reatment	grip and	post-trea	tment gri	p respect	ively.		
	Let $D = Y_i$	$-X_i$.						_	,		
	d	4	5.1	2.3	3.1	0	1.1	0.9	1.2		
	Haina CC (long som	anla\ + +a	a+)							
	Using GC ($\bar{d} = 2$	•	$t_D^2 = 1.740$	* '							
			р 1171	00							
	Let μ_X kg and μ_Y kg be the mean pre-treatment grip and mean post-treatment grip respectively										
	respectively.										
	Let $\mu_D = \mu_Y - \mu_X$. Assumption										
	The popula		fferences	$, D = Y_i -$	$-X_i$, has	a norma	l distribu	tion.			
	$H_0: \mu_D = 0$)									
	$H_1: \mu_D > 0$										
	Under H ₀ ,	test statis	stic $T = \frac{\bar{I}}{I}$	$\frac{\overline{0}-0}{c} \sim t($	7)						
				$\frac{S_D}{\sqrt{8}}$							
	$\alpha = 0.01$										
	$t = \frac{2.2125}{\frac{1.7406}{\sqrt{8}}}$	= 3.5952	2 (5 sf) (fr	rom GC)							
	, ,										
	p-value = I										
	Since p-value = 0.00440 $\leq \alpha = 0.01$, we <u>reject</u> $\underline{\underline{H}_0}$ at the 1% level of significance										
	and conclude there is <u>sufficient evidence</u> that the mean grip of people with the syndrome has increased after undergoing the treatment										
(b)	syndrome has increased after undergoing the treatment. H_0 : $\mu_D = w$										
	$H_1: \mu_D > v$	W									
	Under H_0 ,	test statis	stic $T = \frac{\bar{I}}{2}$	$\frac{\overline{D}-w}{\overline{w}} \sim t($	7)						
			,010 1	$\frac{S_D}{\sqrt{8}}$	• /						
	$\alpha = 0.1$			•							
	Evidence sl	howing a	n increase	e in the m	nean grip	by more	than w m	eans that	H_0 is		
	rejected. At the 10%	level of	sionificar	nce							
	reject H ₀ if		_		(GC: invT:	area = 0.	9, df: 7)				
		2.2125	$\frac{5-w}{26} \geq$	1.4149							
		$\frac{1.740}{\sqrt{8}}$	<u>)6</u> –	211219							
		2.2125	$5-w \geq$	$1.4149(\frac{1}{2})$	$\frac{.7406}{\sqrt{9}}$						
				`	$1.4149 \left(\frac{1}{4}\right)$	<u>.7406</u>					
			∴ w ≤ 1		`	√8 <i>J</i>					

(c) To perform sign test,

Let m be the median of the increase in grip after the treatment

d	4	5.1	2.3	3.1	0	1.1	0.9	1.2
d-1	+	+	+	+	1	+	1	+

Let K_+ be the number of '+'

 $H_0: m = 1$

 $H_1: m > 1$

Under H_0 , test statistic $K_+ \sim B(8, 0.5)$

 $\alpha = 0.01$

From the data, $k_{+} = 6$

$$p$$
-value = $P(K_{+} \ge 6) = 1 - P(K_{+} \le 5) = 0.144$

Since p-value = 0.144 > α , we do not reject H_0 . There is insufficient evidence, at 1% level of significance to conclude that the average grip increases by more than 1 kg after the treatment.

(d) $H_0: m=1$

 $H_1: m > 1$

Under H_0 , test statistic $K_+ \sim B(20, 0.5)$

 $\alpha = 0.01$

For H₀ to be rejected,

$$p$$
-value = $P(K_{+} \ge k_{+}) \le 0.01$

$$1 - P(K_{+} \le k_{+} - 1) \le 0.01$$

$$P(K_{+} \le k_{+} - 1) \ge 0.99$$

From GC,

$$P(K_{+} \le 14) = 0.9793 < 0.99$$

$$P(K_{+} \le 15) = 0.9941 > 0.99$$

$$P(K_{+} \le 16) = 0.9987 > 0.99$$

Hence, $k_{+} - 1 \ge 15 \Longrightarrow k_{+} \ge 16$

There should be at least $\underline{16}$ patients with their grip increases by more than 1 kg after the treatment