Qn	Solution					
1	Differential Equations					
(a)	$\frac{\mathrm{d}P}{\mathrm{d}t} = rP\left(1 - \frac{P}{k}\right) - h$					
	$= -\frac{r}{k} \left(P - \frac{k}{2} \right)^2 + \frac{rk}{4} - h$					
	Since there are two distinct and positive equilibrium population					
	values, $0 < h < \frac{rk}{4}$					
(b)	$\frac{\mathrm{d}P}{\mathrm{d}t} = -\frac{r}{k} \left(P - \frac{k}{2} \right)^2 + \frac{rk}{4} - h = 0$					
	$P = \frac{k}{2} \pm \frac{k}{2} \sqrt{1 - \frac{4h}{kr}}$					
	Let $\alpha = \frac{k}{2} - \frac{k}{2} \sqrt{1 - \frac{4h}{kr}}, \beta = \frac{k}{2} + \frac{k}{2} \sqrt{1 - \frac{4h}{kr}}$					

Qn	Solution
2	Recurrence Relations
2(a)	$R_k = pR_{k+1} + (1-p)R_{k-1}$
	$pR_{k+1} - R_k + (1-p)R_{k-1} = 0$
	$A.E.: pm^2 - m + (1-p) = 0$
	$m = \frac{1 \pm \sqrt{1 - 4p(1 - p)}}{2p}$
	$=\frac{1\pm\sqrt{\left(1-2p\right)^2}}{2p}$
	2p
	1
	When $p = \frac{1}{2}, m = 1$
	When 2
	$G.S.: R_k = (Ak + B)$
	$R_0 = 0 \Longrightarrow B = 0$
	$R_0 = 0 \Rightarrow B = 0$ $R_N = 1 \Rightarrow AN = 1 \Rightarrow A = \frac{1}{N}$
	$R_N = 1 \Rightarrow IRV = 1 \Rightarrow II = N$
	$\therefore R_k = \frac{k}{N}$
	·· N
	$p \neq \frac{1}{m} = \frac{1-p}{m-1}$ or 1
	When $p \neq \frac{1}{2}, m = \frac{1-p}{p}$ or 1
	$C \left(1-p\right)^k$
	$R_k = C \left(\frac{1-p}{p}\right)^k + D$
	$R_0 = 0 \implies C + D = 0 \qquad \qquad(1)$
	$(1-p)^N$
	$R_N = 1 \implies C \left(\frac{1-p}{p}\right)^N + D = 1 (2)$
	Solving (1) and (2):
	$C = \frac{1}{C}$, $D = -\frac{1}{C}$
	$C = \frac{1}{\left(\frac{1-p}{p}\right)^{N} - 1}, D = -\frac{1}{\left(\frac{1-p}{p}\right)^{N} - 1}$
	$\left(\begin{array}{c} \left(\frac{1-p}{p}\right)^k -1 \end{array}\right)$
	$ \therefore R_k = \left \frac{1}{n + n} \right \left(\frac{1-p}{n} \right)^n - \left \frac{1}{n + n} \right = \frac{n}{n + n}$
	$\therefore R_k = \left(\frac{1}{\left(\frac{1-p}{p}\right)^N - 1} \left(\frac{1-p}{p}\right)^k - \left(\frac{1}{\left(\frac{1-p}{p}\right)^N - 1}\right) = \frac{\left(\frac{1-p}{p}\right)^k - 1}{\left(\frac{1-p}{p}\right)^N - 1}$
(b)	1 _ k _
	In a fair game i.e. $p = \frac{1}{2}$, $R_k = \frac{k}{N} \to 0$ since k is finite but N is
	infinite.
	Adam is likely to lose.

$$R_k = \frac{\left(\frac{1-p}{p}\right)^k - 1}{\left(\frac{1-p}{p}\right)^N - 1} \to 0 \text{ since } \frac{1-p}{p} > 1 \Longrightarrow \left(\frac{1-p}{p}\right)^N \to \infty$$
If $p < \frac{1}{2}$, Adam is likely to lose.

If
$$p > \frac{1}{2}, 0 < \frac{1-p}{p} < 1 \Longrightarrow \left(\frac{1-p}{p}\right)^N \to 0$$

$$\therefore R_k = \frac{\left(\frac{1-p}{p}\right)^k - 1}{\left(\frac{1-p}{p}\right)^N - 1} \to 1 - \left(\frac{1-p}{p}\right)^k$$

which increases as k increases.

Adam has a chance to win if k is large enough.

Qn	Solution
3	Complex Numbers
(a)	w-1 = 2 w-3
	x+iy-1 = 2 x+iy-3
	$(x-1)^2 + y^2 = 4((x-3)^2 + y^2)$
	,
	$3x^2 - 22x + 35 + 3y^2 = 0$
	$3\left(x - \frac{11}{3}\right)^2 + 3y^2 = \frac{16}{3}$
	$\left(x - \frac{11}{3}\right)^2 + y^2 = \left(\frac{4}{3}\right)^2$
	$ w-1 = 2 w-3 $ describes a circle centred at $\left(\frac{11}{3}, 0\right)$ with radius $\frac{4}{3}$
(1) (1)	units.
(b)(i)	Point on line: $\frac{2+3i+(-2+5i)}{2} = 4i$
	2+3i-(-2+5i)=4-2i
	Direction of line: $i(4-2i) = 2+4i$
	To find the closest point of L_1 to L_2 ,
	$5+i+\lambda(4-2i)=4i+\mu(2+4i), \lambda,\mu\in\mathbb{R}$
	Comparing real and imaginary components,
	$5 + 4\lambda = 2\mu \qquad(1)$
	$1-2\lambda = 4+4\mu$ (2)
	Solving, $\lambda = -\frac{13}{10}$, $\mu = -\frac{1}{10}$.
	Solving, 10, 10.
	$z_1 = -\frac{1}{5} + \frac{18}{5}i$
(b)(ii	Distance between point and centre of circle
)	$=\sqrt{(5-(-2))^2+(1-5)^2}$
	$=\sqrt{65}$
	$\theta = -\tan^{-1}\left(\frac{4}{7}\right) \pm \sin^{-1}\left(\frac{3}{\sqrt{65}}\right)$
	$\theta = -0.138 \text{ rad or } -0.900 \text{ rad } (3 \text{ s.f.})$

Qn	Solution				
4	Definite Integral				
(a)(i)	$I_n = \int_0^{\frac{\pi}{6}} \cos x \cos^{n-1} x \mathrm{d}x$				
	$= \left[\sin x \cos^{n-1} x\right]_0^{\frac{\pi}{6}} - \int_0^{\frac{\pi}{6}} \sin x (n-1) (-\sin x) \cos^{n-2} x dx$				
	$= \frac{1}{2} \left(\frac{\sqrt{3}}{2} \right)^{n-1} + (n-1) \int_0^{\frac{\pi}{6}} (1 - \cos^2 x) \cos^{n-2} x dx$				
	$nI_n = \frac{1}{2} \left(\frac{\sqrt{3}}{2} \right)^{n-1} + (n-1)I_{n-2}$				
	$I_n = \frac{1}{2n} \left(\frac{\sqrt{3}}{2} \right)^{n-1} + \frac{n-1}{n} I_{n-2}$				
(ii)	$r = 4\cos^3\left(\frac{\theta}{3}\right)$, for $0 \le \theta < 3\pi$				
	Required area = $\frac{1}{2} \int_0^{\frac{\pi}{2}} r^2 d\theta$				
	$=8\int_0^{\frac{\pi}{2}}\cos^6\left(\frac{\theta}{3}\right)d\theta$				
	$=24\int_0^{\frac{\pi}{6}}\cos^6 x dx \qquad \left(\text{substituting } x = \frac{\theta}{3}\right)$				
	$=24\left(\frac{1}{12}\left(\frac{\sqrt{3}}{2}\right)^{5}+\frac{5}{6}\int_{0}^{\frac{\pi}{6}}\cos^{4}xdx\right)$				
	$= \frac{9\sqrt{3}}{16} + 20\left(\frac{1}{8}\left(\frac{\sqrt{3}}{2}\right)^3 + \frac{3}{4}\int_0^{\frac{\pi}{6}}\cos^2 x dx\right)$				
	$= \frac{9\sqrt{3}}{16} + \frac{15\sqrt{3}}{16} + 15\left(\frac{1}{4}\left(\frac{\sqrt{3}}{2}\right) + \frac{1}{2}\int_0^{\frac{\pi}{6}} 1 \mathrm{d}x\right)$				
	$=\frac{27\sqrt{3}}{8}+\frac{5\pi}{4}$				

(b) Consider
$$x^2 + y^2 = a^2$$

$$2x + 2y \frac{dy}{dx} = 0$$

$$\frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{x}{y}$$

Let the thickness of each slice of cake be d.

$$S_x = \pi \int_{x_1}^{x_1+d} y \sqrt{1 + \left(-\frac{x}{y}\right)^2} dx$$

$$= \pi \int_{x_1}^{x_1+d} \sqrt{y^2 + x^2} dx$$

$$= \pi \int_{x_1}^{x_1+d} a dx$$

$$= \pi \left[ax\right]_{x_1}^{x_1+d}$$

$$= a\pi d \text{ (independent of } x_1 \text{ - shown)}$$

0	Colution				
Qn 5	Solution Differential Equations				
(a)	•				
(3)	$(1+x^4)\frac{dy}{dx} + 8x^3y = x \Rightarrow \frac{dy}{dx} = \frac{x-6x}{1+x^4}$				
	$(1+x^4)\frac{dy}{dx} + 8x^3y = x \Rightarrow \frac{dy}{dx} = \frac{x - 8x^3y}{1 + x^4}$ $y_{n+1} = y_n + (0.1) \left[\frac{x_n - 8x_n^3 y_n}{1 + x_n^4} \right]$				
	$y_{n+1} = y_n + (0.1) \left \frac{x_n - 8x_n}{1 + x_n} \frac{y_n}{4} \right $				
	$\begin{bmatrix} 1+X_n \end{bmatrix}$				
	Given that $x_0 = 1$, $y_0 = \frac{1}{3}$ and $h = 0.1$,				
	Given that 3 and $n = 0.1$,				
	$\left 1-8(1)\left(\frac{1}{2}\right) \right $				
	$y_1 = \frac{1}{3} + (0.1) \left \frac{1 - 8(1) \left(\frac{1}{3}\right)}{1 + (1)^4} \right = 0.25$				
	$\begin{vmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 $				
	When $x_1 = 1.1$,				
	When $x_2 = 1.2$,				
	Г 27				
	$y_2 = 0.25 + (0.1) \left \frac{1.1 - 8(1.1)^3 (0.25)}{1 + (1.1)^4} \right $				
	$y_2 - 0.25 + (0.1) \left[\frac{1 + (1.1)^4}{1 + (1.1)^4} \right]$				
	= 0.18661 (to 5 s.f)				
	= 0.187 (to 3 s.f)				
(b)	,				
	dy				
	$n \qquad x_n \qquad \frac{\mathrm{d}y}{\mathrm{d}x}\Big _{x=x_n}$				
	0 1 -0.83333				
	1 11				
	2 12				
	2 1.2 -0.44889				
	dv				
	$\frac{dy}{dx}$ Since the estimated value of $\frac{dy}{dx}$ is increasing over [1, 1, 2], we expect				
	Since the estimated value of dx is increasing over [1, 1.2], we expect				
	that the value is an under-estimate of the actual value of y when				
(a)	x=1.2				
(c)	$\left(1+x^4\right)\frac{\mathrm{d}y}{\mathrm{d}x} + 8x^3y = x$				
	a.				
	$\left(\frac{\mathrm{d}y}{\mathrm{d}x} + \left(\frac{8x^3}{1+x^4}\right)y = \frac{x}{1+x^4}\right)$				
	Integrating factor: $u = e^{\int \frac{8x^3}{1+x^4} dx} = e^{2\int \frac{4x^3}{1+x^4} dx} = e^{2\ln(1+x^4)} = (1+x^4)^2$				
	integrating factor.				

$$\frac{dy}{dx} + \left(\frac{8x^3}{1+x^4}\right)y = \frac{x}{1+x^4}$$

$$(1+x^4)^2 \frac{dy}{dx} + 8x^3 (1+x^4) y = x(1+x^4)$$

$$\frac{d}{dx} \left(y(1+x^4)^2\right) = x+x^5$$

$$y(1+x^4)^2 = \int x+x^5 dx$$

$$y(1+x^4)^2 = \frac{x^2}{2} + \frac{x^6}{6} + C$$
When
$$x = 1, \quad y = \frac{1}{3}$$

$$\left(\frac{1}{3}\right)(1+1)^2 = \frac{1}{2} + \frac{1}{6} + C$$

$$C = \frac{2}{3}$$

Particular solution:

$$y(1+x^4)^2 = \frac{x^2}{2} + \frac{x^6}{6} + \frac{2}{3}$$
$$y = \frac{3x^2 + x^6 + 4}{6(1+x^4)^2}$$

When x = 1.2,

$$y = \frac{3(1.2)^2 + (1.2)^6 + 4}{6(1 + (1.2)^4)^2} = 0.19946$$
 (to 5 s.f)

Percentage error

$$= \frac{\left| \frac{0.19946 - 0.18661}{0.19946} \right| \times 100\% = 6.44\% (3 \text{ s.f})}{0.19946}$$

Since the percentage error is only 6.44%, the estimate is close to the actual value.

Qn	Solution					
6	Confidence Interval					
(a)	Let <i>X</i> be the height of a randomly chosen student (in cm).					
	Since $n = 80$ is sufficiently large, by Central Limit Theorem, \overline{X} follows an approximate normal distribution.					
	95% Confidence Interval:					
	$\left(166 - 1.9600\sqrt{\frac{5.2064}{80}}, 166 + 1.9600\sqrt{\frac{5.2064}{80}}\right)$					
	(165.5,166.5) (1 d.p.)					
	Therefore, a 95% confidence for the population mean height of students in the college is (165.5,166.5).					
	In the long run, if the process of obtaining samples is repeated an infinite number of times, the confidence intervals constructed will contain the actual population mean height of the students for 95% of the samples taken.					
(b)	$\hat{p} = \frac{0.598 + 0.801}{2} = 0.6995$					
	$0.801 = 0.6995 + z\sqrt{\frac{0.6995(1 - 0.6995)}{80}}$					
	z = 1.9801					
	P(-1.9801 < Z < 1.9801) = 0.952					
	k = 95.2 (3 s.f.)					
	Alternative method					
	$P_s \sim N\left(\hat{p}, \frac{\hat{p}(1-\hat{p})}{n}\right)$ approximately					
	$P(0.598 < P_s < 0.801) = 0.95231$					
	k = 95.2 (3 s.f.)					

Qn	Solution					
7	Geometric / Exponential Distribution + Continuous RV					
(a)(i)	Let <i>X</i> be the number of customer who checkouts in one hour.					
	$X \sim \text{Po}(10)$					
	$P(X = 15) = e^{-10} \frac{10^{15}}{15!} = 0.0347$					
	15!					
(ii)	A customer spends 0.1 hour or 6 minutes at checkout counter.					
	Let T be the time, in hours, customer spends at checkout counter.					
	$T \sim \text{Exp}(10)$					
	Customer spends 9 minutes or 0.15 hour at checkout counter.					
	P(T < 0.15)					
	$= \int_0^{0.15} 10 e^{-10t} dt$					
	= 0.77687					
	= 0.777 (to 3 sig fig)					
(iii)	$\mathbf{p}(T < 0.15 \mid T < 0.1) , \qquad ,$					
	P(T > 0.15 T > 0.1) by memoryless property					
	= P(T > 0.05)					
	$=1-\int_0^{0.05} 10 \mathrm{e}^{-10t} \mathrm{d}t$					
	= 0.60653					
	=0.607 (to 3 sig fig)					
a >						
(b)	$P(Y = n) = P(\lfloor X \rfloor + 1 = n)$					
	$= P(n-1 \le X < n)$					
	$=\int_{n-1}^{n}\frac{1}{\lambda}e^{-\frac{1}{\lambda}t}\mathrm{d}t$					
	n					
	$= \left -e^{-\frac{1}{\lambda}t} \right _{t=1}^{t}$					
	n 1					
	$=-e^{-\frac{1}{\lambda}n}+e^{-\frac{1}{\lambda}(n-1)}$					
	$= e^{-\left(\frac{n-1}{\lambda}\right)} (1 - e^{-\frac{1}{\lambda}}) = \left(e^{-\frac{1}{\lambda}}\right)^{n-1} (1 - e^{-\frac{1}{\lambda}})$					
	This is the pdf of a geometric random variable with parameter $1-e^{-\frac{1}{\lambda}}$. (shown)					

~	Solution
8	Hypothesis Testing (Chi-Squared)
(a)	Let x be the number of survey respondents who are aged above 50 years
	old and are not financially literate

 H_0 : Age and financial literacy are independent.

 H_1 : Age and financial literacy are not independent.

The contingency table is as follows.

	<25	25 to 50	>50	Total
FL	70	210	150	430
Not FL	130	440 – x	x	570
Total	200	650 - x	150 + x	1000

Using the formula $E_{ij} = \frac{O_i \times O_j}{n}$, the expected frequency table is shown below.

	<25	25 to 50	>50	Total
FL	86	$\frac{43(650-x)}{100}$	$\frac{43(150+x)}{100}$	430
Not FL	114	$\frac{57(650-x)}{100}$	$\frac{57(150+x)}{100}$	570
Total	200	650 – x	150 + x	1000

Degrees of freedom = (3-1)(3-1) = 2

Test Statistic:
$$\sum_{i} \sum_{j} \frac{\left(O_{ij} - E_{ij}\right)^{2}}{E_{ij}} \sim \chi_{2}^{2}$$

Contributions in each cell

	<25	25 to 50	>50
FL	128 43	$\frac{\left(43x - 6950\right)^2}{4300\left(650 - x\right)}$	$\frac{\left(8550 - 43x\right)^2}{4300\left(150 + x\right)}$
Not FL	128 57	$\frac{\left(6950 - 43x\right)^2}{5700\left(650 - x\right)}$	$\frac{\left(43x - 8550\right)^2}{5700\left(150 + x\right)}$

Using MF26, at the 2.5% significance level, reject H₀ if

$$\chi^2$$
 cal ≥ 7.378

Since Ho is not rejected,

$$\frac{12800}{2451} + \frac{\left(43x - 6950\right)^2}{2451\left(650 - x\right)} + \frac{\left(8550 - 43x\right)^2}{2451\left(150 + x\right)} < 7.378$$
Using GC,

169.28 < *x* < 197.55

Therefore, the minimum number of survey respondents who are aged above 50 years old and are not financially literate is 170.

(b) Contributions in each cell

	<25	25 to 50	>50
FL	$\frac{128}{43} \approx 2.98$	$\frac{27}{430} \approx 0.0628$	$\frac{961}{860} \approx 1.12$
Not FL	$\frac{128}{57} \approx 2.25$	$\frac{27}{570} \approx 0.0474$	$\frac{961}{1140} \approx 0.843$

The cells belonging to those under 25 years old are the highest contributors to the test statistics at 2.98 and 2.25. There are fewer financially literate respondents than expected, which might mean that there are more Singaporeans under 25 years old than expected who are not financial literate and may not have the knowledge to manage their finances well. Hence, this may be a potential concern.

Qn	Solution										
9	Non Param	etric T	Cest								
(a)	Since $n = 10$, Sum of the ranks $1 + 2 + 3 + + 10 = \frac{10 \times 11}{2} = 55$.										
(b)	Let <i>m</i> be the							es min	us nre-	test sc	ores
	$H_0: m = 0$	рориг	ution i	ilcululi	or the	post to	50 5001	C5 111111	ius pre	test se	ores
	· ·										
	$H_1: m > 0$										
	Student	A	В	C	D	E	F	G	Н	Ι	J
	Sign	+	+	+	+	-	_	+	+	_	+
	Abs Diff	2	10	9	4	7	8	6	5	1	12
	Rank	2	9	8	3	6	7	5	4	1	10
	P = 2 + 9 + 3	8+3+3	5+4+	10 = 4	1						
	Q = 6 + 7 +	1=14									
	$T = \min(P,$	(Q)=1	4								
	,	,									
	E MEG	C		1 . 11	1	50 / •			1 0-	- 10	
	From MF26	, for n	=10,	1-tailed	i test a	5% S1	gnifica	ince le	vel, c-	- 10	
	To reject H	$_{0}$, $T \leq 1$	10 .								
	Since $T = 14$	4 > 10,	we do	not rej	ect H ₀	and co	nclude	that th	nere is	insuffi	cient
	evidence at 5% significance level that the innovative teaching strategy can										
	improve the	Mathe	matics	test sc	cores of	stude	nts.				
				0.11					11 . 11		
(c)	The underly		pulatio	n of di	fferenc	es is sy	ymmet	rically	distrib	uted.	
(d)	Using a sign										
	Let $S_{-} = nu$										
	Under H_0 ,	<i>S</i> _− ~ B	(10,0.	5)							
	From the da	ta, S_	=3								
	Using GC, p	-value	=P(S	$\leq 3) =$	0.172	> 0.05	(3 s.f)				
	We do not	reject]	H ₀ and	l concl	ude th	at ther	e is in	suffici	ent evi	dence	at 5%
	significance					e teac	hing s	trategy	y can	impro	ve the
	Mathematic					المسمد الما	1	41	1.		_: :.
	This is the incorrect.	same c	conclus	sion as	part (u) and	nence	ine re	esearch	er s cl	aim is
(e)	Paired-samp	le <i>t</i> -tes	st can h	e used	. Howe	ever. th	nis will	only h	e valid	if the	
	difference in							-	, 4110		
	1										

Qn	Solution					
10	Poisson Distribution					
(a)	$\sum_{r=1}^{\infty} P(Y=r) = 1$ $\sum_{r=1}^{\infty} kP(X=r) = 1$					
	$k\left(\sum_{r=0}^{\infty} P(X=r) - P(X=0)\right) = 1$ $k\left(1 - \lambda^{0} e^{-\lambda}\right) = 1 \qquad \text{(since } X - Po(\lambda))$					
	$k\left(1 - \frac{\lambda^{0} e^{-\lambda}}{0!}\right) = 1 \qquad \left(\text{since } X \sim \text{Po}(\lambda)\right)$ $k = \frac{1}{1 - e^{-\lambda}}$					
	$X \sim \text{Po}(6.5)$ $P(Y > 7) = \frac{1}{1 - e^{-\lambda}} P(X > 7)$					
	$= \frac{1}{1 - e^{-6.5}} \left(1 - P(X \le 7) \right)$ = 0.328					
(b)	$E(Y) = k E(X) = \frac{\lambda}{1 - e^{-\lambda}}$					
	$\frac{\lambda}{1 - e^{-\lambda}} = 4.5$ $\lambda = 4.45$					
(c)	$\lambda = 4.45$ $E(Y) = \frac{\lambda}{1 - e^{-\lambda}} \to \lambda \text{ for large values of } \lambda.$					
	The claim is valid for large values of λ					
(d)	$E[Y(Y-1)] = \sum_{y=1}^{\infty} (y(y-1))P(Y=y)$					
	$= \sum_{y=2}^{\infty} (y(y-1)) P(Y=y)$					
	$= \sum_{y=2}^{\infty} \left(y \left(y - 1 \right) \right) \left(\frac{1}{1 - e^{-\lambda}} \frac{\lambda^{y} e^{-\lambda}}{y!} \right)$					
	$= \frac{\lambda^2}{1 - e^{-\lambda}} \sum_{y=2}^{\infty} \frac{\lambda^{y-2} e^{-\lambda}}{(y-2)!}$					
	$=\frac{\lambda^2}{1-\mathrm{e}^{-\lambda}}\sum_{r=0}^{\infty}\frac{\lambda^r\mathrm{e}^{-\lambda}}{r!}$ λ^2					
	$=\frac{\lambda^2}{1-e^{-\lambda}}$					
	$E(Y^2 - Y) = E(Y^2) - E(Y) = \frac{\lambda^2}{1 - e^{-\lambda}}$					

$E(Y^2) = \frac{\lambda^2 + \lambda}{1 - e^{-\lambda}}$
$Var(Y) = E(Y^2) - [E(Y)]^2$
$=\frac{\lambda^2+\lambda}{1-e^{-\lambda}}-\frac{\lambda^2}{\left(1-e^{-\lambda}\right)^2}$
$1 - e^{-\lambda} \left(1 - e^{-\lambda}\right)^2$