| Cano | lidate In | idex Nu | mber | |------|-----------|---------|------| | | | | | | | | | | | | | | | # Anglo - Chinese School (Independent) # FINAL EXAMINATIONS 2016 YEAR 3 INTEGRATED PROGRAMME CORE MATHEMATICS PAPER 1 WEDNESDAY 5th OCTOBER 2016 1 h 30 min Additional Material Graph Paper (1 sheet) #### **INSTRUCTIONS TO CANDIDATES** - Write your index number in the boxes above. - Do not open this examination paper until instructed to do so. - You are not permitted access to any calculator for this paper. - Answer all questions in the spaces provided. - Unless otherwise stated in the question, all numerical answers must be given exactly or correct to three significant figures. - The maximum mark for this paper is 80. | | For Examiner's Use | |---|--------------------| L | | This paper consists of 14 printed pages. [Turn over Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are therefore advised to show all working. Answer all the questions in the spaces provided. | 1 | [] [· | 7 | 0.7 | |---|-----------|---------|-----| | 1 | [Maximum] | mark: c | 31 | (a) Simplify $$\frac{a-b}{ab} - \frac{c-b}{bc} + \frac{c-a}{ac}$$. [2 marks] (b) Simplify $\frac{x^3y^3 \times \sqrt[3]{x}}{\sqrt{x^2y^4}}$, giving your answer in the form x^ny^m , where n and m are rational numbers. [3 marks] (c) Factorise completely $(x + y)^2 - (x + y) - 6$. [3 marks] | Mrs. Lim imported some olive oil for \$500. She paid x for each liter of the olive oil. | |---| | (a) Find, in terms of x , an expression for the amount of olive oil she bought. | | [1 mark] During transportation, 30 liters of olive oil was spilled. She sold the remaining olive oil for \$1 more per liter than what she paid initially. | | (b) If she sold all the oil, write down an expression, in terms of x, for the sum of money she received from the sale. | | Mrs. Lim made a loss of \$25. | | (c) Write down an equation in x to represent this information, and show that it can be reduced to $6x^2 + x - 100 = 0$. | | [2 marks] | | (d) Solve the equation $6x^2 + x - 100 = 0$, and hence, find the amount of olive oil she bought. [3 marks] | [Maximum mark: 8] 2 | 3 | [Maximum mark: 8] | | |---|--|----| | | (a) Given that $-a \ln b$ is a solution to $25 - 2e^{-x} = 9$, find the value of a and of b , where a and b are integers. | | | | (b) Solve $\log_2(x+1) = \log_4(13-2x)$. |] | | | [4 marks] | :] | | 624 | [4 | |-----|---| | |
 |
••••• | | |
 | | |
 | | |
••••• | | |
••••• | | |
 | | |
 | | |
• | | |
 | | |
 | ### 4 [Maximum mark: 5] The quadratic graph below represents the motion of a cannonball which was fired from a height of 3 meter. The trajectory of the cannonball reached a maximum height of 8 m after 2 seconds. (a) Given that y is the vertical distance in meters and x is the time in seconds, express the equation of the trajectory in the form $y = a(x-h)^2 + k$, where a, h and k are constants. constants. [3 marks] (b) Hence, find the range of values of x for which $a(x-h)^2+k>3$. [2 marks] | 5 | [Maximum mark: 5] | | |---|--|-----------| | | Given that $5 \le a \le 10$ and $-6 \le b \le -1$, where a and b are integers. Find | | | | (a) the largest possible value of $a-b$, | [1 mark] | | | (b) the smallest possible value of $b^2 - a$, | [1 mark] | | | (c) the smallest possible value of $\frac{-a^2 + 12a - 31}{b}$. | [1 mark] | | | | [3 marks] | #### **6** [*Maximum mark: 12*] The diagram shows a parallelogram ABCD where the coordinates of A and B are (-8, 4) and (-4, 6) respectively. The equation of AD is 3y + x - 4 = 0. N is the foot of the perpendicular from B to AD, and AN = ND. (a) Find the equation of BN. (b) Find the coordinates of *N*. [3 marks] (c) State the coordinates of C and D. (d) Calculate the area of the parallelogram ABCD. [3 marks] | |
 - |
 |
 |
 |
 | |
 | |
• | | • | |
 | | • | |
 | | | |
- |
 | • | |
• |
• |
 | |--|------|------|------|------|------|------|------|---|------|------|------|------|--|------|---|-------|--|---|------|------|--|---|--|------|--|------|--|-------|------|---|--|-------|-------|------| | |
 • |
 |
 |
 |
 | |
 | | | | |
 |
 | | | |
 | |
 | |
 |
 | • | |
• | |
 | | |
 - | | |
 | | |
 | • | | | | | | | • | |
 | | | |
 |
 | | | |
• |
 | | |
 • |
 |
 |
 |
 | |
 | | | | |
 |
 | | | |
 | |
 | | |
 | | | | |
 | | |
 |
 |
 |
 | |
 |
 | |
 |
 |
 |
 | |
 | |
 | | |
 |
 | | | |
 | |
 | |
 |
 | | |
 |
 |
 | [3 marks] [3 marks] | 7 | [Maximum mark: 6] | |---|----------------------------------| | | Solve the simultaneous equations | | | $2^{2+m} + 3(3^n) = 5$ | | | $2^m + 3^{n+1} = 2$ | ## **8** [Maximum mark: 8] (a) In the diagram below, PRS is a straight line and $\angle PQR = 90^{\circ}$. Find the value of (i) $\tan \angle QRP$, [1 mark] (ii) $\cos \angle QRS$. [2 marks] (b) Given that θ is obtuse and that $\sin \theta = \frac{2}{3}$, find the value of $\frac{\tan \theta}{1 - \cos \theta}$. Leave your answer in the from $a\sqrt{b} + c$, where a, b and c are constants. [5 marks] |
 | |---------| |
 | |
 | |
•• | |
 | |
•• | |
 | |
•• | |
•• | |
•• | |
• • | |
• • | |
• • | |
• • | |
 | |
 | | 9 | [Maximum | mark. | 61 | |---|-----------------|-------|------------| | , | [IVI UNITHUITI | mun. | σ_I | | (a) It is given that the graph of $y = -x^2 + (k+2)x + (k-1)$ touches the x – axis at only or point. Find the possible values of k . | | | | | | | |--|-----------|--|--|--|--|--| | | [3 marks] | | | | | | | (b) Given that $\frac{3}{x^2 + 5x - 14} < 0$, find the range of values of x. | | | | | | | | | | | | | | | | I | [3 marks] | [Maximum mark: 5] | | | | | |---|--|--|--|--| | If $\alpha^2 \beta$ and $\beta^2 \alpha$ are the roots of the equation $x^2 - 10x - 8 = 0$, find the quadratic equation with the roots, α and β . | #### **11** [*Maximum mark:* 9] #### Answer the whole of this question on a sheet of graph paper. The variables x and y are connected by the equation $y = x + \frac{3}{x} - 1$, x > 0. The table below shows some values of x and the corresponding values of y, correct to 1 decimal place. | х | 0.5 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | |---|-----|---|-----|---|-----|-----|-----|-----| | у | 5.5 | 3 | 2.5 | n | 3.8 | 4.6 | 5.5 | 6.4 | (a) Calculate the value of n. [1 mark] (b) Using a scale of 2 cm to represent 1 unit on the x – axis and 2 cm to represent 1 unit on the y – axis, draw the graph of $y = x + \frac{3}{x} - 1$ for $0.5 \le x \le 7$. [3 marks] (c) The roots of the equation $ax^2 + bx + c = 0$ is given by the x – coordinate of the point of intersection of the curve $y = x + \frac{3}{x} - 1$ and the line y = 2x + 4. Find the values of a, b and c. [3 marks] (d) Using the same axes, draw the graph of y = 2x + 4 and hence write down the solution(s) of the equation $ax^2 + bx + c = 0$ in (c). [2 marks] ****** END OF PAPER 1 *******