Cano	lidate In	idex Nu	mber

Anglo - Chinese School (Independent)

FINAL EXAMINATIONS 2016 YEAR 3 INTEGRATED PROGRAMME CORE MATHEMATICS PAPER 1

WEDNESDAY

5th OCTOBER 2016

1 h 30 min

Additional Material
Graph Paper (1 sheet)

INSTRUCTIONS TO CANDIDATES

- Write your index number in the boxes above.
- Do not open this examination paper until instructed to do so.
- You are not permitted access to any calculator for this paper.
- Answer all questions in the spaces provided.
- Unless otherwise stated in the question, all numerical answers must be given exactly or correct to three significant figures.
- The maximum mark for this paper is 80.

	For Examiner's Use
L	

This paper consists of 14 printed pages.

[Turn over

Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are therefore advised to show all working.

Answer all the questions in the spaces provided.

1	[] [·	7	0.7
1	[Maximum]	mark: c	31

(a) Simplify
$$\frac{a-b}{ab} - \frac{c-b}{bc} + \frac{c-a}{ac}$$
.

[2 marks]

(b) Simplify $\frac{x^3y^3 \times \sqrt[3]{x}}{\sqrt{x^2y^4}}$, giving your answer in the form x^ny^m , where n and m are rational numbers.

[3 marks]

(c) Factorise completely $(x + y)^2 - (x + y) - 6$.

[3 marks]

Mrs. Lim imported some olive oil for \$500. She paid x for each liter of the olive oil.
(a) Find, in terms of x , an expression for the amount of olive oil she bought.
[1 mark] During transportation, 30 liters of olive oil was spilled. She sold the remaining olive oil for \$1 more per liter than what she paid initially.
(b) If she sold all the oil, write down an expression, in terms of x, for the sum of money she received from the sale.
Mrs. Lim made a loss of \$25.
(c) Write down an equation in x to represent this information, and show that it can be reduced to $6x^2 + x - 100 = 0$.
[2 marks]
(d) Solve the equation $6x^2 + x - 100 = 0$, and hence, find the amount of olive oil she bought. [3 marks]

[Maximum mark: 8]

2

3	[Maximum mark: 8]	
	(a) Given that $-a \ln b$ is a solution to $25 - 2e^{-x} = 9$, find the value of a and of b , where a and b are integers.	
	(b) Solve $\log_2(x+1) = \log_4(13-2x)$.]
	[4 marks]	:]

624	[4
	 •••••
	 •••••
	 •••••
	 •

4 [Maximum mark: 5]

The quadratic graph below represents the motion of a cannonball which was fired from a height of 3 meter. The trajectory of the cannonball reached a maximum height of 8 m after 2 seconds.

(a) Given that y is the vertical distance in meters and x is the time in seconds, express the equation of the trajectory in the form $y = a(x-h)^2 + k$, where a, h and k are constants.

constants. [3 marks]

(b) Hence, find the range of values of x for which $a(x-h)^2+k>3$. [2 marks]

5	[Maximum mark: 5]	
	Given that $5 \le a \le 10$ and $-6 \le b \le -1$, where a and b are integers. Find	
	(a) the largest possible value of $a-b$,	[1 mark]
	(b) the smallest possible value of $b^2 - a$,	[1 mark]
	(c) the smallest possible value of $\frac{-a^2 + 12a - 31}{b}$.	[1 mark]
		[3 marks]

6 [*Maximum mark: 12*]

The diagram shows a parallelogram ABCD where the coordinates of A and B are (-8, 4) and (-4, 6) respectively. The equation of AD is 3y + x - 4 = 0. N is the foot of the perpendicular from B to AD, and AN = ND.

(a) Find the equation of BN.

(b) Find the coordinates of *N*.

[3 marks]

(c) State the coordinates of C and D.

(d) Calculate the area of the parallelogram ABCD. [3 marks]

	 	-	 	 	 	 		 		 •		•		 		•		 				 -	 	•		 •	 •	 						
	 	•	 	 	 	 		 					 	 				 		 		 	 	•		 •		 						
	 	-			 			 	•							•		 				 	 				 •	 						
	 	•	 	 	 	 		 					 	 				 		 			 					 						

.....

.....

.....

.....

.....

[3 marks]

[3 marks]

7	[Maximum mark: 6]
	Solve the simultaneous equations
	$2^{2+m} + 3(3^n) = 5$
	$2^m + 3^{n+1} = 2$

8 [Maximum mark: 8]

(a) In the diagram below, PRS is a straight line and $\angle PQR = 90^{\circ}$. Find the value of

(i) $\tan \angle QRP$,

[1 mark]

(ii) $\cos \angle QRS$.

[2 marks]

(b) Given that θ is obtuse and that $\sin \theta = \frac{2}{3}$, find the value of $\frac{\tan \theta}{1 - \cos \theta}$. Leave your answer in the from $a\sqrt{b} + c$, where a, b and c are constants.

[5 marks]

 ••
 ••
 ••
 ••
 ••
 • •
 • •
 • •
 • •

9	[Maximum	mark.	61
,	[IVI UNITHUITI	mun.	σ_I

(a) It is given that the graph of $y = -x^2 + (k+2)x + (k-1)$ touches the x – axis at only or point. Find the possible values of k .						
	[3 marks]					
(b) Given that $\frac{3}{x^2 + 5x - 14} < 0$, find the range of values of x.						
I	[3 marks]					

[Maximum mark: 5]				
If $\alpha^2 \beta$ and $\beta^2 \alpha$ are the roots of the equation $x^2 - 10x - 8 = 0$, find the quadratic equation with the roots, α and β .				

11 [*Maximum mark:* 9]

Answer the whole of this question on a sheet of graph paper.

The variables x and y are connected by the equation $y = x + \frac{3}{x} - 1$, x > 0. The table below shows some values of x and the corresponding values of y, correct to 1 decimal place.

х	0.5	1	2	3	4	5	6	7
у	5.5	3	2.5	n	3.8	4.6	5.5	6.4

(a) Calculate the value of n.

[1 mark]

(b) Using a scale of 2 cm to represent 1 unit on the x – axis and 2 cm to represent 1 unit on the y – axis, draw the graph of $y = x + \frac{3}{x} - 1$ for $0.5 \le x \le 7$.

[3 marks]

(c) The roots of the equation $ax^2 + bx + c = 0$ is given by the x – coordinate of the point of intersection of the curve $y = x + \frac{3}{x} - 1$ and the line y = 2x + 4. Find the values of a, b and c.

[3 marks]

(d) Using the same axes, draw the graph of y = 2x + 4 and hence write down the solution(s) of the equation $ax^2 + bx + c = 0$ in (c).

[2 marks]

****** END OF PAPER 1 *******