Can	didate in	<u>iaex ivur</u>	nber

Anglo - Chinese School

(Independent)

FINAL EXAMINATIONS 2018 YEAR 3 INTEGRATED PROGRAMME CORE MATHEMATICS PAPER 1

WEDNESDAY 3rd OCTOBER 2018 1 h 30 min

Candidates answer on the Question Paper. No additional materials are required.

INSTRUCTIONS TO CANDIDATES

- Write your index number in the boxes above.
- Do not open this examination paper until instructed to do so.
- You are not permitted access to any calculator for this paper.
- Answer all questions in the spaces provided.
- Unless otherwise stated in the question, all numerical answers must be given exactly or correct to three significant figures.
- The maximum mark for this paper is 80.

For Examiner's Use

This paper consists of 16 printed pages.

Turn over

Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are therefore advised to show all working.

Answer all the questions in the spaces provided.

[Ma	aximum mark: 8]	
(a)	Evaluate $3 - \frac{5}{3 - \frac{5}{3 - \frac{5}{3}}}$.	[3 marks]
(b)	2-x	[2 marks]
(c)	Factorize $(x+y)^2 - x^2 + y^2$ completely.	[3 marks]
••••		
	[Working 1	nay be continued next pag

2	[Maximum	mark.	7	1
≠ .	WIUNIIIIIII	mark.	/ /	1

(a)	Given that $-4 \le x \le -\frac{1}{2}$ and $-1 \le y \le 7$, and x and y are integers.	
	Find	
	(i) the smallest possible value of $y^3 - x$,	[1 mark]
	(ii) the greatest possible value of $\frac{x}{2y}$.	[1 mark]
(b)	Solve $x - \frac{1}{2} < \frac{6x - 1}{4} \le x + \frac{3}{2}$ and state the largest integer that satisfies the inequ	ıality
(0)	$\frac{1}{2}$ $\frac{1}{4}$ $\frac{1}{2}$ $\frac{1}{4}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$	
		[5 marks]
•••••		
•••••		•••••
•••••		
• • • • • • •		
•••••		
•••••		
•••••		
•••••		•••••
•••••		
•••••		
•••••		
• • • • • • •		
•••••		
•••••		••••••
•••••		

3	[Maximum mark: 6]
	Solve the simultaneous equations $4^{x-4} \div 32^y = 16^{\frac{1}{x}}$,
	$7^x \times \sqrt{7^y} = 5^{\log_3 1}.$

4	[Maxin	mum mark: 6]	
	(a)	[[3 marks]
	(b)	Solve for x if $29-3(10^{2x})=3+10^{2x+1}$. Leave your answer in the form of a lg	b where
			[3 marks]
	•••••		•••••
	•••••		•••••
	•••••		•••••
	•••••		•••••
	•••••		•••••
	•••••		•••••
	•••••		•••••
	•••••		• • • • • • • • • • • • • • • • • • • •
	•••••		
	•••••		•••••
	•••••		• • • • • • • • • • • • • • • • • • • •
			•••••

5 [Maximum mark: 6] It is given that x and y are related by the equation $x - q = \frac{px}{y}$ where p and q are constants. When y is plotted against $\frac{y}{z}$, a straight-line graph is obtained. The line has gradient 3 and it passes through (1, 5). Find the value of p and of q. (a) [4 marks] Find the value of y when 2x - y = 0. **(b)** [2 marks]

6 [Maximum mark: 7]

A metal wire, of length 64 m, is to be bent to form the frame of a rectangular box as shown below.

Given that the dimensions of the box are $2x \text{ m} \times 2 \text{ m} \times h \text{ m}$,

(a)	express h in terms of x ,	[2 marks]
(b)	express the volume $V \mathrm{m}^3$ of the box in terms of x ,	[2 marks]
(c)	find the maximum volume of the box and the value of x at which it occurs.	[3 marks]
•••••		
•••••	FW7 1: 1	
	[Working may be con	unuea next page]

7 [Maximum mark: 9]

The points A(2, 4), B(6, -4) and C(12, -6) are the three vertices of a parallelogram ABCD. E is a point at the foot of the perpendicular from B to AC. Find

- (a) the coordinates of D, [1 mark]
- (b) the equation of AC, [2 marks]
- (c) the coordinates of E, [3 marks]
- (d) the equation of the line, l, which is perpendicular to the line AB and whose points are each equidistant from A and from B.

 [3 marks]

	 	 • • •	•••	• • •	 • • •	• •	• • •	•••	• • •	• •	• • •	• •	• • •	• •	• • •	• • •	• •	• • •	•••	• •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	•••	• • •	• • •	• • •	• •	• • •	• • •	• • •	• • •			•
	 •••	 •••	•••		 			••		••		•••					•••			• •		• • •								•••				•••		•••					
	 •••	 	•••		 	•••		••				••		••			•••					• • •								•••				••							
••••	 •••	 •••	•••	• • •	 	• •		••	• • •	• •		• •		••			••		•••	• •		• • •		• • •																	
																										- [W	or l	rin	O	ma	w.	hρ	C	ากา	tin	110	d n	PX	t n	a

(a)	Find the range of values of k if $4x^2 - 2kx > 0$ for all real values of x	[4 m				
(a)	Find the range of values of k if $4x^2 - 3kx > -9$ for all real values of x. [4]					
(b)	The equation $2x^2 - x - 2 = 0$ has roots α and β . Find					
	(i) the value of $\alpha + \beta$ and of $\alpha\beta$,	[2 m				
	(ii) the quadratic equation whose roots are α^2 and β^2 .	[4 m				
•••••						
•••••						
•••••						
		••••••				

9	[Maxi							
	Given that $\cos A = -\frac{1}{3}$ and $90^{\circ} \le A \le 180^{\circ}$, find the value of							
	(a)	$\sin A$,	[2 marks]					
	(b)	$\tan\left(180^{\circ}-A\right)$,	[2 marks]					
	(c)	$\frac{3\sin A - \sqrt{2}\tan A}{3 + \tan A}$, leaving your answer in the form $a + \cos A$						
			[4 marks]					
	•••••							

10	[Maximum mark: 13]	
(a)	Given that $\log_y \left[\lg x + \left(\frac{6 \lg 81}{\lg 27} \right) \right] = 3 \lg 10$, express x in terms of y. [3]	marks]
(b)	Solve the following equations	
	(i) $x^{1+\lg x} = 10x$ [5]	marks]
	(ii) $\frac{\log_2(9-2^x)}{3-x} = 1$ [5]	marks]
•••••		
•••••		
•••••		
•••••		
•••••		
•••••		

.....

.....[Working may be continued next page]

End of Paper 1

Answers:

1a.
$$\frac{29}{3}$$

$$\frac{29}{3}$$
 1b. $x = \frac{2-y}{y+1}$

1c.
$$(x+y)(2y)$$

3.
$$\left(-\frac{1}{3}, \frac{2}{3}\right)$$
 and $(1, -2)$

4b.
$$\frac{1}{2} \lg 2$$

$$q=3$$
 and $p=2$

6a.
$$h = 14 - 2x$$

6b.
$$56x - 8x$$

$$q = 3$$
 and $p = 2$
 $h = 14 - 2x$ **6b.** $56x - 8x^2$ **6c.** $V_{\text{max}} = 98 \text{ m}^3$ at $x = \frac{7}{2} \text{ m}$.
 $D(8,2)$ **7b.** $y = -x + 6$ **7c.** $E(8,-2)$ **7d.** $y = \frac{1}{2}x - 2$

7a.
$$D(8,2)$$

7b.
$$y = -x +$$

$$E(8, -2)$$

7d.
$$y = \frac{1}{2}x - 2$$

8a.
$$-4 < k < 4$$

$$-4 < k < 4$$
 8bi. $\alpha + \beta = \frac{1}{2}$; $\alpha\beta = -1$ **8bii.** $4x^2 - 9x + 4 = 0$

8bii.
$$4x^2 - 9x + 4 = 0$$

9a.
$$\frac{2\sqrt{2}}{3}$$
 9b. $2\sqrt{2}$ **9c.** $20+14\sqrt{2}$

9b.
$$2\sqrt{2}$$

9c.
$$20+14\sqrt{2}$$

10a.
$$x = 10^{y^3 - 8}$$

10a.
$$x = 10^{y^3 - 8}$$
 10bi. $x = 10$ or $\frac{1}{10}$ **10bii.** $x = 0$ or $3(NA)$

10bii.
$$x = 0$$
 or $3(NA)$