Yr6/4/CHEM/HP1/Aug2022

CHEMISTRY
Higher Level
Paper 1
Preliminary Examinations

Wednesday 31 August 2022

1	hou

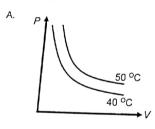
INSTRUCTIONS TO CANDIDATES

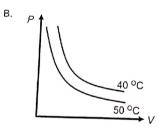
- Write your name, class and index number in the blanks below.
- Do not open this examination paper until instructed to do so.
- · Answer all the questions.
- For each question, choose the answer you consider to be the best and indicate your choice on the answer sheet provided.
- The periodic table is provided for reference on page 2 of this examination paper.
- The maximum mark for this examination paper is [40 marks].

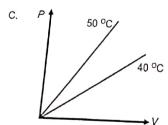
Name:	
Class:	
ndev.	/ 40

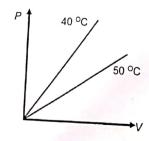
18pages © School of the Arts, Singapore - 2 - Yr6/4/CHEM/HP1/Aug2022

								The	The Periodic Table	lic Tal	ole			;	;	,	:	,	
	-	7	က	4	so.	ဖ	٠	80	ø	9	Ξ	12	£	4	15	9	ا ج	<u>ء</u> [
-	- = 3			Ā	Alomic number	<u> </u>											•	4.00 4.00	
N	10.r	4 BB	1 5	<u> </u>	Element Relative atomic mass	mass							5 10.81	6 C 12.01	7 N 14.01	8 0 16.00	9 F 19.00	10 Ne 20.18	
6	6.94 11 Na	9.01 12 Mg											13 Al 26.98	14 Si 28.09	15 P 30.97	16 S 32.07	17 Cl 35.45	18 Ar 39.95	
4	22.99 19	24.31 20 Ca	21 Sc	25	2 > 3	24 Cr	25 Mn 54 94	26 Fe 55.85	27 Co 58.93	28 N: 58.69	29 Cu 63.55	30 Zn 65.38	31 Ga 69.72	32 Ge 72.63	33 As 74.92	34 Se 78.96	35 Br 79.90	36 83.90	
10	39.10 37 Rb	38 Sr	39 ×	47.87 40 Zr	41 AN	Mo	1c 43	44 Ru 101.07	45 Rh 102.91	46 Pd 106.42	47 Ag 107.87	48 Cd 112.41	49 In 114.82	50 Sn 118.71	51 Sb 121.76	52 Te 127.60	53 1 126.90	54 Xe 131.29	
	85.47 55 Cs	87.62 56 Ba		91.22 72 Hf	73 Ta	W X	75 Re	76 08	77 Jr 182.22	78 Pt 195.08	79 Au 196.97	80 Hg 200.59	81 T1 204.38	82 Pb 207.2	83 BI 208.98	2009	85 At (210)	86 (222)	
, ,	132.91 87 Fr	137.33 88 Ra	138.91 89‡ Ac	178.49 104 Rf	105 105 Db	163.64 106 Sg	107 Bh (270)	108 Hs (269)	109 Mt (278)	110 Ds (281)	111 Rg (281)	112 Cn (285)	113 Unt (286)	114 Uug (289)	115 Uup (288)	116 Uuh (293)	117 Uus (294)	118 Uuo (294)	
	(223)	(226)	(227) †	(Zer)		09 PX	61 Pm (145)	62 Sm 150.36	63 Eu 151.96	64 Gd 157.25	65 Tb 158 93	66 Dy 162.60	67 Ho 164.93	68 Er 167.26	69 Tm 168.93	70 Yb 173.05	17 174.97		
			**	90 Th 232.04		92 U 238.03	83 (237)	94 Pu (244)	95 Am (243)	Cm 08	97 Bk (247)	98 Cf (261)	99 E6 (252)	100 Fm (257)	101 Md (268)	102 No (259)	262) 7 = (262)		

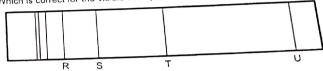

- Yr6/4/CHEM/HP1/Aug2022

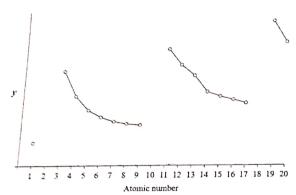

 20.0 cm³ of 0.20 mol dm⁻³ aqueous sodium bromide, NaBr (aq), was mixed with 30.0 cm³ of 0.30 mol dm⁻³ aqueous potassium bromide, KBr (aq). What is the concentration of bromide ions in the final solution?
 - A. 0.10 mol dm⁻³
 - B. 0.25 mol dm⁻³
 - C. 0.26 mol dm⁻³
 - D. 0.50 mol dm⁻³
- What is the volume of carbon dioxide formed when 2.5 dm³ of propane is burnt in 20.0 dm³ of oxygen?


$$C_3H_8(g) + 5O_2(g) \rightarrow 3CO_2(g) + 4H_2O(g)$$


- A. 3.0 dm³
- B. 5.0 dm³
- C. 7.5 dm³
- D. 12.0 dm³
- Which graph shows the relationship between the pressure, P, and volume, V, of an ideal gas at 40 °C and 50 °C?

D.

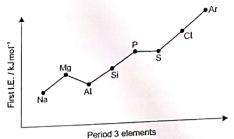



Turn Over

4. Which is correct for the visible line spectrum of hydrogen shown below?

-4-

- A. Line U has a higher energy than line T.
- B. Line T has a lower frequency than line S.
- C. Line R has a longer wavelength than line S
- D. All the lines are caused by transitions that end at n = 1 level.
- 5. An element is in group 17 and period 4 of the periodic table. How many electrons are in the highest occupied principal (main) energy level of an atom of this element?
 - A. 4
 - B. 5
 - C. 7
 - D. 17
- 6. What would be observed when sodium is added to water?
 - A gas is evolved.
 - The pH of the solution increases.
 - III. The temperature of the water increases.
 - A. I and II only
 - B. I and III only
 - C. II and III only
 - D. I, II and III



Source: International Baccalaureate Organization

- A. Ionic radius
- B. Atomic radius
- C. Electronegativity
- D. First ionization energy

Turn Over

8. Which statement explains the decrease in first ionization energies among the period 3 elements?

Source: International Baccalaureate Organization

		the second secon
	Between Mg and Al	Between P and S
A.	The p-orbital electron in Al is further from the nucleus than the s-orbital electron in Mg.	There is electron-electron repulsion in S but not in P.
B.	There is electron-electron repulsion in Al but not in Mg.	The p-orbital electron in P is further from the nucleus than the s-orbital electron in S.
C.	The effective nuclear charge in Al is higher than that of Mg.	There is less shielding effect by inner shell electrons in P compared to S.
D.	There is less shielding effect by inner shell electrons in Mg compared to Al.	The effective nuclear charge in S is higher than that of P.

- A. CH₃CH₂CH₃
- B. F₃CCH₂CF₃
- C. HCOOCH2CH3
- D. HOCH2CH2CH2OH

10. What are the values of angles E and F in the molecule?

	angle E	angle F
A.	120°	120°
B.	120°	109°
C.	109°	120°
D.	109°	109°

Turn Over

- 11. Which pair of molecules has the same molecular shape?
 - A. CO2 and HCN
 - B. NH₃ and BH₃
 - C. NH₃ and H₂CO
 - D. BF₃ and PF₃
- 12. Which molecule is non-polar?
 - A. SF₂
 - B. NF₃
 - C. CF₄
 - D. CH₂F₂
- 13. Which molecule contains delocalized electrons?
 - A. Carbon dioxide, CO₂
 - B. Ozone, O₃
 - C. Methanoic acid, HCOOH
 - D. Propene, C₃H₆
- 14. The specific heat capacity of X is twice that of Y. In an experiment, the same amount of heat is supplied to 10 g of X and 5 g of Y.

What is the correct increase in temperature, in °C, for 10 g of X and 5 g of Y?

	10 g of X	5 g of Y
A.	5	10
B.	5	20
C.	10	10
D.	20	5

15. Which statement is correct for this reaction?

 $2Mg(s) + CO_2(s) \rightarrow 2MgO(s) + C(s)$ $\Delta H = -780 \text{ kJ}$

- 390 kJ of heat is absorbed for every mole of MgO produced.
- B. 390 kJ of heat is released for every mole of MgO produced.
- C. 780 kJ of heat is released for every mole of MgO produced.
- D. 1560 kJ of heat is released for every mole of MgO produced.
- **16.** The lattice enthalpy relates to the enthalpy change in the process:

 $M_a X_b(s) \to a M^{b+}(g) + b X^{a-}(g)$

Which ionic compound has the most endothermic lattice enthalpy?

- A. Lithium chloride
- B. Potassium chloride
- C. Potassium fluoride
- D. Lithium fluoride
- 17. Which is true of the forward reaction of a non-spontaneous redox reaction?
 - A. The entropy change of the universe for the forward reaction is positive.
 - B. The Gibbs free energy change for the reverse reaction is positive.
 - C. The cell potential is negative.
 - The equilibrium constant is greater than one under standard conditions.
- **18.** Why does increasing the temperature increases the rate of a chemical reaction?
 - More molecules have energy equal to or greater than the activation energy.
 - B. The activation energy for the reaction is lower at higher temperature.
 - C. The position of equilibrium shifts in the exothermic direction.
 - D. More molecules have the correct collision geometry.
- Turn Over

- 19. Powdered manganese(IV) oxide, MnO₂, is added to increase the rate of the decomposition of aqueous hydrogen peroxide, H₂O₂. Which statements about MnO₂ are correct?
 - I. The rate does not depend on the particle size of MnO₂.
 - II. The mass of MnO2 remains unchanged at the end of the decomposition.
 - III. MnO₂ provides an alternative reaction pathway for the decomposition with a lower activation energy.
 - A. I and II only
 - B. I and III only
 - C. Il and III only
 - D. I, II and III
 - 20. The overall chemical equation is shown below.

$$Y_2 + Z \rightarrow YZ + Y$$

The reaction occurs in two steps.

$$Y_2 \rightarrow 2Y$$
 slow

What is the rate expression for this reaction?

- A. Rate = $k [Y_2]$
- B. Rate = k [2Y]
- C. Rate = k[Y][Z]
- D. Rate = $k[Y_2][Y][Z]$

Hydrogen reacts with carbon dioxide as shown in the equation below.

$$H_2(g) + CO_2(g) \rightleftharpoons H_2O(g) + CO(g) \Delta H = +41 \text{ kJ mol}^{-1}$$

The quantity of CO formed at equilibrium can be increased by

- adding a suitable catalyst.
- B. increasing the temperature.
- removing CO2(g).
- D. reducing the volume of the vessel.
- Which statement is incorrect regarding a reversible reaction?
 - The system achieves equilibrium when the reaction quotient, Q, equals to the equilibrium constant, K_c .
 - Equilibrium is reached when the temperature of the system remains constant.
 - Equilibrium is reached when the concentrations of the reactants and products are constant.
 - Equilibrium is reached when the rate constant of forward reaction equals to the rate constant of the reverse reaction.
- Which is true of the signs of ΔG^{Θ} and ΔS^{Θ} for a reaction that is spontaneous at all temperatures?

	ΔG^{Θ}	ΔS^{Θ}
A.	negative	negative
B.	positive	negative
C.	negative	positive
D.	positive	positive

24. The ionization of the HSO₃ ion is shown below.

$$HSO_3^-(aq) + H_2O(I) \Rightarrow SO_3^{2-}(aq) + H_3O^+(aq)$$

Which are the Bronsted-Lowry acid and conjugate acid?

- 12 -

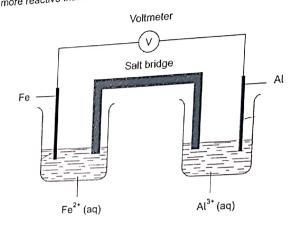
	Bronsted-Lowry acid	Conjugate acid
Α.	HSO₃¯	SO ₃ ²⁻
В.	HSO₃¯	H₃O⁺
C.	H₂O	SO ₃ ²⁻
D.	H₂O	H₃O⁺

25. The pH of 1.0 mol dm⁻³ acid Q is 2.

Which statement can be deduced from this information?

- Acid Q is a weak acid.
- Acid Q is a dibasic acid.
- Acid Q does not react with sodium carbonate.
- The pH of acid Q decreases when it is diluted with water.
- Which pair of solutions will produce a buffer solution when mixed in equal volumes? (The concentrations of all solutions are 1 mol dm⁻³.)
 - H₂SO₄ and Na₂CO₃
 - CH₃COOH and NaOH
 - NaOH and CH₃COONa
 - NH₃ and NH₄Cl

- I. AICL
- II. [Cu(H2O)6]2*
- III. NH4*
- A. I and II only
- B. I and III only
- C. II and III only
- D. I, II and III
- 28. Which is correct for the reaction below?


$$Zn(s) + 2NaOH(aq) + 2H2O(I) \rightarrow Na2Zn(OH)4(aq) + H2(g)$$

- A. In is the oxidizing agent and the oxidation number of Zn increases.
- Zn is the reducing agent and the oxidation number of Zn decreases.
- Zn is the oxidizing agent and the oxidation number of H decreases.
- D. Zn is the reducing agent and the oxidation number of H decreases.

Turn Over

- 14 - Yr6/4/CHEM/HP1/Aug2022

29. A voltaic cell is constructed from aluminium and iron half-cells. Aluminium is more reactive than iron. Which statement is correct?

- Negative ions flow through the salt bridge from the iron half-cell to the aluminium half-cell.
- B. Electrons flow from the iron half-cell to the aluminium half-cell.
- The concentration of Fe²⁺ (aq) increases.
- D. Electrons flow through the salt bridge.
- In the electrolysis of aqueous sodium sulfate, Na₂SO₄ (aq), using inert electrodes, 0.4 mol of a gas was formed at the anode (positive electrode).

Which is the correct observation made at the cathode (negative electrode)?

	Gas produced	Amount gas produced/ mol
A.	hydrogen	0.2
В.	oxygen	0.2
C,	hydrogen	0.8
D.	oxygen	0.8

	E° / V with respect to the standard hydrogen electrode
$Ag^+(aq) + e^- \rightleftharpoons Ag(s)$	+0.80
$Ni^{2+}(aq) + 2e^- \rightleftharpoons Ni(s)$	-0.26

- A. +1.06 V
- B. -1.06 V
- C. +0.54 V
- D. -0.34 V
- 32. Which compound has the highest IHD value?
 - A. CH₃CH₂CH₂CH₃
 - B. Cl₂C=CCl₂
 - C. CH₃CH₂NH₂
 - D. НООССООН
- 33. Which substances may be formed from the incomplete combustion of octane, C₈H₁₈?
 - I. C (soot)
 - II. CO
 - III. H₂
- A. I and II only
- B. I and III only
- C. II and III only
- D. I, II and III

Turn Over

- 34. Which is correct for benzene?
 - There are alternating single and double carbon-carbon bonds in the ring structure.

- 16 -

- It readily undergoes addition reaction.
- C. Its ¹H NMR spectrum shows only one signal.
- D. Its ¹H NMR spectrum shows six signals.
- 35. Which statement is correct of the reaction between CH3Cl and KCN?
 - A. An intermediate is formed during the reaction.
 - B. The reaction is slower if CH₃Cl is replaced by CH₃Br.
 - C. A protic, polar solvent should be used for this reaction.
 - D. The reaction occurs via a one-step mechanism.
- 36. Which molecules exhibit stereoisomerism?
 - I. 1,2-dichloroethene
 - II. 1,2-dibromocyclobutane
 - III. 1,2-difluoropropane
 - A. I and II only
 - B. I and III only
 - C. II and III only
 - D. I, II and III

YTELACHEMHETAH IN 2021

37. The reaction pathway to produce pentan-3-one, CH₃CH₂COCH₂CH₃ from the alkene, C₄H₁₀ is shown below.

$$C_{5}H_{70} \xrightarrow{\text{HEr}} P \xrightarrow{\text{NaOH}} Q \xrightarrow{H7 \text{ K}_{2}\text{Cr}_{2}\text{O}_{7}} CH_{5}\text{CH}_{2}\text{COCH}_{2}\text{CH}_{5}$$
Step 3

Which statement is not correct for this reaction pathway?

- A. Pent-1-ene is used for this reaction.
- B. Step 1 is an addition reaction.
- C. Step 2 is a substitution reaction.
- D. Acidified K₂Cr₂O₇ can be replaced by acidified KMnO₄ in Step 3.
- 38. Which compound will not react with lithium aluminium hydride, LiAlH4?
 - A. CH₃CH₂COOH
 - B. CH₃COCH₃
 - C. CH₂CH₃CHO
 - D. CH₃CH₂CH₂OH
- **39.** $50.0 \pm 0.5 \text{ cm}^3$ of a liquid has a mass of $10.00 \pm 0.01 \text{ g}$.

Which is the most appropriate expression for the density of the liquid?

- A. 0.2000 g cm⁻³
- B. 0.200 g cm⁻³
- C. 0.20 g cm⁻³
- D. 0.2 g cm⁻³

Turn Over

- 40. What information of a molecule cannot be obtained from single crystal X-ray crystallography analysis?
 - A. Eand engths
 - E Eand angles
 - C. Eand strength
 - Three-dimensional structure of the malecule

-End of Paper-

CHEMISTRY Higher level Paper 2 Preliminary Examinations

Tuesday 31 August 2022

2 hours 15 minutes

INSTRUCTIONS TO CANDIDATES

- Write your name, class and index number in the blanks below.
- Do not open this examination paper until instructed to do so.
- · Answer all questions.
- Answers must be written within the answer boxes provided.
- A calculator is required for this paper.
- A clean copy of the chemistry data booklet is required for this paper.
 The maximum mark for this examination paper is [90 marks].

20 pages © School of the Arts, Singapore

-	Yr6/4/CHEM/HP2/Aug20
---	----------------------

1.	An o com 1.32 (a)	rganic bustion 03 g c (i)	compound contains the elements carbon, hydrogen and oxygen. Complete of 0.6011 g of the organic compound produces 0.7208 g of water and arbon dioxide. Calculate the amount, in mol, of carbon present in the organic compound. [1]
		(ii)	Calculate the amount, in mol, of hydrogen present in the organic [1]
		(iii)	Calculate the amount, in mol, of oxygen present in the organic compound. [1]
		(iv) Determine the empirical formula of the organic compound. [1]
	(b) 0. co	6011 g of the organic compound is found to contain 0.010 mol of the ompound. Determine the molar mass of the organic compound. [1]

- 3 -

2022

	the organic car	swer to parts (a)(iv) and (b)	Yr6/4/CHEM/HP2/Aug
	- ganic cor	npound.	Yr6/4/CHEM/HP2/Aug

2.	(a) Describe the acid	d-base character of the ox	ides of the period 3 elements,
			the period 3 elements,
· · · · · · ·			

-			
(2	 Formulate an equal with water. 	ation for the reaction of	phosphorus(V) oxide, P₄O ₁₀ ,
	•••••••		
•••••	•••••••••••••••••••••••••••••••••••••••		
(c)	Vanadium has two con	nmon natural isotopes: van	adium-50 and vanadium-51.
	The mass spectrum of	imon natural isotopes; van a sample of vanadium gave	e the following data:
	Mass number	% abundance	
	50	0.250	
L	51	99.750	
s	uggest a reason for the		
	-ggest a reason for the	low percentage abundanc	e of vanadium-50. [1]
	San San San		

Turn over

Yr6/4/CHEM/HP2/Aug2022

	a graph of the axes provided		successi	ve ioniza	tion ener	gies (I.E.) of	vanadium	[2]
log (i.E.)								
		2	3	1	5	6		

- 4 -

(e)	Explai	n why aqueou	IS [V(H2O) ₆] ²⁺	is violet us	ing section	17 of the da	ita bookiet.	[2]
•••••	• • • • • • • • • • • • • • • • • • • •					• • • • • • • • • • • • • • • • • • • •		
••••••								\
•••••					•••••			
•••••			• • • • • • • • • • • • • • • • • • • •					

- 5 -

Yr6/4/CH	EM/HP2	/Aug2022

(f)	Vanadium trifluoride reacts with liquid ammonia to form VF ₃ (NH ₃) ₃ .	
	(i) Deduce the oxidation state of vanadium in VF ₃ (NH ₃) ₃ .	· [1]
 	<u>.</u>	
	(ii) Explain the magnetic property of VF ₃ (NH ₃) ₃ .	[1]

Turn over

-6-

Yr6/4/CHEM/HP2/Aug2022

 Theobromine is found in chocolate. The skeletal representation of theobromine is shown below.

		[1]
(a) (i) List the nu	umber of pi (π) bonds in theobromine.	
(ii) Sketch th	ne shape of one sigma (σ) and one pi (π) bond.	[2]
(11)		
gma (σ) bond:		
i (π) bond:		
		- (2)
(iii) Dedu	uce the hybridisation of the nitrogen atoms labelled A and	IB. [2]
A:	B:	
	Later Control	

(b) The chemical formula for the carbonate ion is CO_3^{2-} .

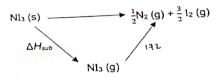
(i)	Draw the Lewis structure of CO ₃ ²⁻

[1]

Yr6/4/CHEM/HP2/Aug2022

- (ii) Explain the molecular geometry of CO₃²⁻. [2]
- (iii) Comment on the bond length of the carbon-oxygen bond in CO₃²⁻. [2]

Turn over


- Solid nitrogen triiodide, NI₃, is a type of contact explosive. It explodes easily when touched.
 - (a) (i) Calculate the enthalpy change of reaction, ΔH, in kJ, when 1.00 mol of gaseous NI₃ decompose into its elements. Use section 11 of the data booklet and the N-I bond enthalpy of 159 kJ mol⁻¹.

 $NI_3(g) \rightarrow \frac{1}{2}N_2(g) + \frac{3}{2}I_2(g)$

(ii) The enthalpy change for the explosion of solid Nl_3 is -145 kJ mol⁻¹.

NI₃ (s)
$$\rightarrow \frac{1}{2}$$
N₂ (g) $+ \frac{3}{2}$ I₂ (g) $\Delta H = -145$ kJ mol⁻¹

Using your answer from part (a) and the energy cycle below, calculate the enthalpy change of sublimation, ΔH_{sub} , of NI₃ in kJ mol⁻¹.

(If you did not get an answer to part (a), use -85 kJ mol⁻¹ but this is not the correct answer.)

- (b) Nitrogen trifluoride, NF₃, has a structure similar to NI₃.
 - Calculate the standard enthalpy change, $\Delta H^{\scriptscriptstyle igodot}$, in kJ mol⁻¹, for the decomposition of NF₃.

[1] $NF_3(g) \rightarrow \frac{1}{2}N_2(g) + 3F(g)$

	Enthalpy change of formation $\Delta H_f^{\Theta}/\ \mathrm{kJ}\ \mathrm{mol}^{-1}$
NF ₃ (g)	-132.1
F (g)	+79.4

 ,

(ii) Calculate the entropy change, ΔS^{\ominus} , for this reaction.

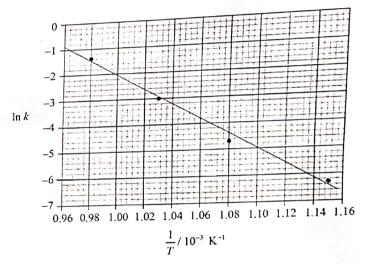
[1]

	Entropy, S⊖/ J K ⁻¹ mol ⁻¹
F (g)	158.8
N ₂ (g)	191.6
NF ₃ (g)	260.8

Using your answers from (b)(i) and (ii), and section 1 of the data booklet comment if this reaction is spontaneous at 25 °C.

(If you did not obtain an answer in (b)(i) or (b)(ii), use $-87.6 \,\text{kJ}\,\text{mol}^{-1}$ and $-150.5 \,\text{J}\,\,\text{K}^{-1}\,\text{mol}^{-1}$ respectively, but these are not the correct answers.) [2]

Turn over


Yr6/4/CHEM/HP2/Aug2022 - 10 -

The Arrhenius equation, $k = Ae^{-\frac{f_2}{RT}}$, shows the relationship between rate constant and temperature, T (in Kelvin).

(a) State how temperature affects activation energy.

(b) The graph of $\ln k$ against $\frac{1}{7}$ for the decomposition of N_2O is shown below.

$$N_2O \rightarrow N_2 + O$$

Source: International Baccalaureate Organization

State how the rate constant, k, varies with temperature, T.

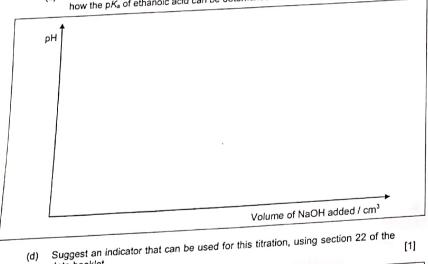
[1]

[1]

Yr6/4/CHEM/HP2/Aug2022	-12 -
(ii) Determine the activation energy, E_a , for this reaction, using section 1 and 2 of the data booklet. [3]	Yr6/4/CHEM/HP2/Aug2022 6. Methane reacts with steam as shown in the equation below.
(v)	$CH_4(g) + H_2O(g) = CO(g) + 3H_2(g) \Delta H = +131 \text{ kJ moF}^1$
	(a) State the equilibrium constant expression, K_* , for the reaction above.
	(1)
	(b) Explain how the position of equilibrium would be affected by decreasing the volume of the reaction container at constant temperature. [1]
(c) The rate expression for this reaction is rate = $k [N_2O]^2$. The value of the rate constant at 1023 K is 0.244.	
(i) Deduce the units of the rate constant.	······································
[1]	
	(c) CH₄ (2.00 mol dm ⁻³) and H₂O (1.00 mol dm ⁻³) are mixed and allowed to reach equilibrium at 450 K.
	CH₄ H₂O CO H₂
	Initial concentration / mol dm ⁻³ 2.00 1.00 0.00 0.00
 (ii) A sample of N₂O of concentration 0.500 mol dm⁻³ is decomposed at 1023 K. Calculate the rate when 20% of the N₂O has reacted. [2] 	Equilibrium concentration
[2]	/ mol dm ⁻³ 0.30
	(i) Deduce the equilibrium concentrations of CH₄, CO and H₂ in the table above. [2]
	(ii) Calculate the value of K_c at 450 K. [1]
	(ii) Calculate the value of N_c at 450 N.
(iii) Predict the effect of a catalyst on the value of the rate constant. [1]	
(iii) I reduct the effect of a catalyst off the value of the rate constant.	
	(iii) Predict the value of Gibb's free energy change, ΔG, of the equilibrium mixture at 450 K.

Turn over

NaOH (aq) + CH₃COOH (aq) \rightarrow CH₃COONa (aq) + H₂O (l)


	Calculate the concentration of ethanoic acid.
(a)	Calculate the concentration of care

[1]

(b) Calculate the pH of the aqueous sodium hydroxide at 298 K.

(D) Gaile		

(c) Sketch the titration curve of ethanoic acid with aqueous sodium hydroxide. Show how the pK₃ of ethanoic acid can be determined from the curve. [3]

data booklet.

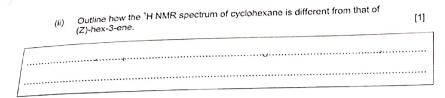
Turn over

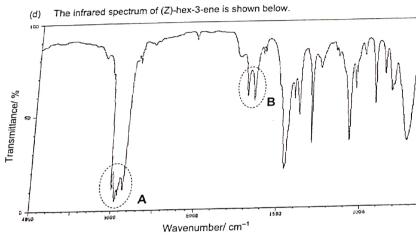
4 -	Yr6/4/CHEM/HP2/Aug202

		ectrolysis of molten aluminium oxide, Al ₂ O ₃ , betw	reen
		-is of molten aluminium of	
	inad by el	ectrolysis	[2]
	-tuminium is obtained by	, alectrode.	
. Pi	ure aluminations 40 °C to 980 °C.	reactions at each electron	
94	40 °C to see	for the readile	
	Deduce the half-equality	for the reactions at each electrode.	
(a	I) Doda		
	(setrode):		
anode ((positive electrode):		
	t-strade):		
Cathod	e (negative electrode):		
			7 of
			[2]
		estion including the state symbols	[-1
	Deduce the overall cell re	action including the state symbols, using sectio	
(1	the data booklet.		
	uno -		
	***************************************	- Address - Addr	
		through through	h the
		and used when a current, I, is passed that)	will be
1	(c) 80 kg of aluminium is	produced when a current, I , is passed through Predict the mass of aluminium, in kg. that is passed through the electrolyte for 3 hours.	[1]
,	electrolyte for 2 hours.	is passed through the electrolyte for 3 hours	
	produced if a current, 21,	Predict the mass of aluminium, in kg, predict the mass of aluminium, in kg, is passed through the electrolyte for 3 hours.	
			-

Yr6/4/CHEM/HP2/Aug2022

		- 15 -
		Yr6/4/CHEM/HP2/Aug2022
	(d	 Pure aluminium is used in the aluminium-hydrogen peroxide fuel cell. The reaction for the fuel cell is shown below.
		2Al (s) + 3H ₂ O ₂ (aq) + 6H* (aq) \rightarrow 2Al ^{3*} (aq) + 6H ₂ O (l) $E_{cell}^{\Theta} = +3.44 \text{ V}$
		In this fuel cell, aluminium is oxidized to aluminium ion, AI (s) \rightarrow Al ³⁺ (aq) + 3e
	(i)	Calculate the standard Gibbs free energy, ΔG^{\odot} , in kJ mol ⁻¹ , of this reaction, using section 1 of the data booklet.
		, [2]
	• • • • • • • • • • • • • • • • • • • •	7
•	(ii)	Formulate the half-equation for the reduction of hydrogen peroxide. [1]
		, , , , , , , , , , , , , , , , , , ,
	(iii)	Calculate the standard electrode potential for the reduction of hydrogen peroxide
		using section 24 of the data booklet. [1]
	•••••	


9. Cyclohexane and (Z)-hex-3-ene are isomers with the molecular formula C_6H_{12} . Both are colourless liquids at room temperature. (a) Draw the structural formula of (Z)-hex-3-ene. [1] (b) Describe a chemical test and the expected result that distinguishes cyclohexane and (Z)-hex-3-ene. Test: Result:


- (c) Three signals were observed in the high resolution 1H NMR spectrum of (Z)-hex-3-ene.
- Predict the ratio of the integration trace and the splitting pattern of the [3] three signals using section 27 of the data booklet.

Chemical shift /ppm	Ratio of integration trace	Splitting pattern
0.96		
2.03		
5.33		

- 17 -

Yr6/4/CHEM/HP2/Aug2022

Identify the bonds responsible for the absorptions at A and B in the infrared spectrum using section 26 of the data booklet.

B: A:

Turn over

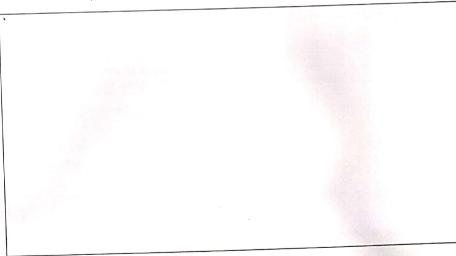
[2]

- 18 -Yr6/4/CHEM/HP2/Aug2022

The mass spectrum of (Z)-hex-3-ene is shown below. 30 Relative Intensity

m/z Suggest the fragments that cause the following peaks using section 28 of the data booklet..

50


m/z 27:

(Z)-hex-3-ene reacts with hydrogen bromide to form 3-bromohexane.

20

10

Sketch the mechanism of the reaction between (Z)-hex-3-ene and hydrogen bromide, using curly arrows to represent movement of electron pairs.

Yr6/4/CHEM/HP2/Aug202	22
Suggest a reason why the product obtained for this reaction does not rotate plane-polarized light. [1]	
(g) A mixture of cyclohexane, C ₆ H ₁₂ , (in large excess) and chlorine is exposed to UV radiation to start a chemical reaction. A monochlorinated product, C ₆ H ₁₁ Cl, is formed as the major product at the end of the reaction.	
(i) State the mechanism of the reaction between cyclohexane and chlorine. [1]	_
(ii) Suggest a reason why cyclohexane is used in large excess. [1]	I
(iii) The mechanism of this reaction involves three stages: initiation, propagation and termination. List the two chemical equations in the propagation stage to form C ₆ H ₁₁ CL [2	1_
(iv) State the formula of the hydrocarbon compound formed in the termination stage. [1]
	_

Turn over

The monochlorinated product, $C_8H_{11}Cl$, is further reacted in the two-ster reaction pathway as shown.)
$C_6H_{11}CI$ NaOH(aq) $C_6H_{11}OH$ conc. H_2SO_4 $CH_3COOC_6H_{11}$ Step 2	
(v) Deduce the type of reaction in Step 1.	[1]
(vi) C ₆ H ₁₁ OH is reacted with another organic compound in the presence small amount of concentrated sulfuric acid in Step 2. Deduce the or compound used.	e of a rganic [1]
(vii) Outline the purpose of adding concentrated sulfuric Step 2.	acid in [1]
——————————————————————————————————————	
Source: All spectral diagrams are extracted from https://www.aist.go.	jp

-End of Paper-

