Name:	Index Number:	Class:	
name:	index number:	Class:	

CATHOLIC HIGH SCHOOL Preliminary Examination Secondary 4 (O-Level Programme)

CHEMISTRY

Paper 1 Multiple Choice

6092/01

29 August 2023 1 hour

Additional Materials: Multiple Choice Answer Sheet

READ THESE INSTRUCTIONS FIRST

Write in soft pencil.

Do not use staples, pencil clips, glue or correction fluid. Write your name, index number and class on the Answer Sheet in the spaces provided.

There are **forty** questions in this Paper. Answer **all** questions. For each question there are four possible answers **A**, **B**, **C** and **D**.

Choose the **one** you consider correct and record your choice in **soft pencil** on the separate Answer Sheet.

Each correct answer will score one mark. A mark will not be deducted for a wrong answer. Any rough working should be done in this booklet.

A copy of the Periodic Table is given on page **19**.

The use of an approved scientific calculator is expected, where appropriate.

For examiner's use only:	Total	/ 40

This document consists of **19** printed pages.

1 The diagrams show four different methods of collecting gases.

Which method is suitable for collecting a gas which has the properties described?

	method for collecting gas	properties of gas
Α	1	less dense than air and soluble in water
в	2	denser than air and soluble in water
С	3	less dense than air and soluble in water
D	4	denser than air and insoluble in water

2 A mixture of three liquids is separated by fractional distillation in the school laboratory.

Which two statements are correct?

- 1 A pure sample of each liquid can be obtained after separation.
- 2 The mixture boils at constant temperature throughout the separation.
- 3 The three liquids are miscible with each other.
- 4 The three liquids are collected at the same time at different parts of the fractionating column.
- A 1 and 3
- **B** 1 and 4
- **C** 2 and 3
- **D** 2 and 4

3 When heated, magnesium reacts with oxygen in the air to form magnesium oxide, a white powder.

A student wants to investigate the percentage purity of a piece of magnesium ribbon. The student is given a balance and three sets of apparatus shown.

Which sets of apparatus are suitable for his investigation?

- A 1, 2 and 3
- B 1 and 3 only
- C 2 and 3 only
- D 2 only
- 4 Which substance should be pure for the intended use?
 - **A** a drug for curing diseases
 - **B** aluminium for making airplane bodies
 - **C** petrol for car fuels
 - **D** tap water for human consumption

5 P and Q are all samples of colourless alcohols.

A paper chromatogram is obtained for samples of P and Q.

Which row is correct?

	statement 1	statement 2
Α	A locating agent was used.	P may be a pure substance.
в	A locating agent was used.	P must be a pure substance.
с	No locating agent was used.	Q contains a substance that is least soluble in the solvent used.
D	No locating agent was used.	Q contains a substance that is most soluble in the solvent used.

6 Substance Y is added to an excess of hot water.

A blue solution forms and a brown solid remains.

The brown solid is filtered off and dried.

The brown solid conducts electricity.

Which statement about the substance Y, the blue solution, or the brown solid is incorrect?

- **A** Substance Y may be a mixture which contains a metal.
- **B** Substance Y may contain copper(II) carbonate.
- **C** The blue solution must be an impure substance.
- **D** The brown solid may be an impure substance.
- 7 P is a white powdery solid.

When a small spatula of P was added to a boiling tube filled with distilled water, P dissolved to form a blue solution.

The blue solution was divided into two separate test-tubes.

In the first test-tube, a blue precipitate was formed on dropwise addition of aqueous ammonia which dissolved in excess to form a deep-blue solution.

In the second test-tube, a white precipitate was formed on addition of an equal volume of acidified aqueous barium nitrate. The mixture was filtered and the filtrate crystallised to obtain solid Q.

What is P and Q?

	Р	Q
Α	barium sulfate	barium sulfate
в	barium sulfate	copper(II) nitrate
С	copper(II) sulfate	barium sulfate
D	copper(II) sulfate	copper(II) nitrate

8 25.0 cm³ of aqueous silver nitrate was added to 25.0 cm³ of aqueous zinc nitrate to form mixture L.

Mixture L was then added to 150 cm³ of 0.05 mol/dm³ sodium iodide in a beaker.

1.18 g of precipitate was formed.

What is the concentration of silver nitrate present in mixture L?

- A 0.065 mol/dm³
- **B** 0.100 mol/dm³
- **C** 0.150 mol/dm³
- **D** 0.200 mol/dm³
- 9 Which diagram shows the arrangement of the outermost electrons in calcium fluoride?

10 Part of the giant lattice structure of an ionic compound is shown.

The structure repeats to make a giant lattice.

Which statement is incorrect?

- **A** The ions are held by strong electrostatic forces of attraction.
- **B** The lattice structure is broken down when this ionic compound dissolves in water.
- **C** There are three anions directly surrounding each cation in the giant lattice.
- **D** This lattice structure could resemble that of calcium oxide.
- 11 Which statement about the structure or bonding of metals is correct?
 - **A** A metal lattice consists of negative ions in a 'sea of electrons'.
 - **B** Electrons in a metal move randomly through the lattice.
 - **C** Metals are malleable because the ions present are mobile.
 - **D** The ions in a metal move when positive and negative electrodes are attached.
- **12** The apparatus shown is set up to plate a steel key with copper.

The steel key does not get plated with copper.

What is the **minimum** number of changes that needs to be made to plate the key with copper?

A 1 **B** 2 **C** 3 **D** 4

13 The diagram shows the electrolysis of concentrated hydrochloric acid and concentrated aqueous sodium chloride using carbon electrodes.

Which is a similarity between the two electrolysis experiments?

- **A** A gas which extinguishes a lighted splint with a 'pop' sound is produced at the negative electrode.
- **B** A gas which relights a glowing splint is produced at the positive electrode.
- **C** A gas which turns damp red litmus paper blue and then bleaches it is produced at the positive electrode.
- **D** Electrons flow from the negative terminal of the battery towards the negative electrode, electrolyte, positive electrode and back to the positive terminal of the battery.
- **14** A simple cell can be made using two different metals as the electrodes and an aqueous solution as the electrolyte.

Which statements about simple cells are correct?

- 1 A greater voltage is produced using magnesium and silver than using magnesium and copper.
- 2 Ethanol can be used as the electrolyte.
- 3 The more reactive metal will release electrons.
- 4 An anion always gets discharged at the negative electrode.
- A 2 only
- **B** 1 and 3 only
- **C** 1, 3 and 4 only
- **D** 1, 2, 3 and 4

15 The reaction between hydrogen and iodine to form hydrogen iodide is exothermic.

Which statement explains why the reaction is exothermic?

- A More bonds are formed than broken.
- **B** The activation energy is less than the energy released when bonds are formed.
- **C** The bond energies of the reactants are greater than the bond energies of the products.
- **D** The products are at a higher energy level than the reactants.
- **16** Lumps of copper(II) carbonate was added to 100 cm³ of 1.00 mol/dm³ dilute sulfuric acid which is in excess.

 $CuCO_3 \ + \ H_2SO_4 \ \rightarrow \ CuSO_4 \ + \ H_2O \ + \ CO_2$

The rate of the reaction and total volume of gas produced can be changed by varying the conditions.

Which changes always increase **both** the rate of the reaction and the total volume of gas produced?

- 1 adding more powdered copper(II) carbonate
- 2 increasing the concentration of sulfuric acid
- 3 increasing the temperature
- 4 increasing the volume of sulfuric acid
- **A** 1 only **B** 1 and 2 **C** 1, 2 and 4 **D** 2, 3 and 4
- **17** Aqueous iron(III) chloride reacts with aqueous potassium iodide.

 $v FeCl_3 + wKI \rightarrow xFeCl_2 + yKCl + I_2$

Which statements are correct?

- 1 In the balanced equation, *v*, *w*, *x* and *y* have the same value.
- 2 A purplish-black vapour is produced in the reaction.
- 3 Potassium iodide is used to test for the presence of an oxidising agent.
- A 1 and 2 only B 1 and 3 only C 2 only D 2 and 3 only

18 In an experiment, 1 mole of powdered copper and 1 mole of powdered zinc are placed in a flask.

1 mole of a dilute monobasic acid is added to the flask.

The flask is left to stand until all reactions, if any, are complete.

Which diagram shows the result of the experiment?

19 Which statements about sulfuric acid are correct?

- 1 Sulfuric acid can be used to treat excess acidity in soil.
- 2 Sulfuric acid is used as a battery acid.
- 3 Sulfuric acid is used in the manufacture of detergents.
- 4 The reaction between dilute sulfuric acid and any soluble base can be represented by the equation $H^+(aq) + OH^-(aq) \rightarrow H_2O(I)$.
- A 4 only
- **B** 1 and 2 only
- C 2 and 4 only
- **D** 2, 3 and 4 only

20 The Haber process for making ammonia can be represented using a flow diagram.

Which change in conditions would produce a greater **final** amount of ammonia made from a fixed amount of nitrogen and hydrogen?

	adding a catalyst	increasing the pressure
Α	\checkmark	\checkmark
в	\checkmark	×
С	×	\checkmark
D	×	×

key

 \checkmark = produce a greater final amount of ammonia

 \times = does not produce a greater final amount of ammonia

- 21 Which compound when warmed with aqueous calcium hydroxide would give the largest mass of ammonia gas?
 - **A** 0.5 mol of (NH₄)₃PO₄
 - **B** 1.0 mol of Al(NO₃)₃
 - C 1.0 mol of NH₄Cl
 - **D** 1.0 mol of (NH₄)₂SO₄

- **22** A student wrote down part of the method used to make lead(II) chloride.
 - 1 Add <u>excess</u> dilute nitric acid to lead(II) carbonate.
 - 2 Add <u>excess</u> dilute hydrochloric acid to the filtrate.
 - 3 <u>Filter</u> the mixture.

What is the purpose of each of the underlined words in steps 1, 2 and 3?

	step 1	step 2	step 3
A	to ensure all the lead(II) carbonate has reacted	to ensure maximum yield of lead(II) chloride	to obtain the residue
В	to ensure all the lead(II) carbonate has reacted	to speed up reaction	to obtain the filtrate
С	to remove carbonate ions	to ensure maximum yield of lead(II) chloride	to obtain the residue
D	to remove carbonate ions	to speed up reaction	to obtain the residue

23 Excess barium oxide and barium carbonate are added separately to dilute hydrochloric acid.

Which row correctly shows whether a pure sample of barium chloride can be obtained from the resultant mixture?

You may assume that barium oxide is soluble in water.

	barium oxide	barium carbonate
Α	\checkmark	\checkmark
в	\checkmark	×
С	×	\checkmark
D	×	×

key

 \checkmark = can obtain pure barium chloride

 \times = cannot obtain pure barium chloride

- 24 Which statement about the elements in the Periodic Table is correct?
 - **A** Atoms of elements lose electrons less easily down a group of the Periodic Table.
 - **B** Elements are arranged in the order of increasing relative atomic masses.
 - **C** Elements in the same group of the Periodic Table have the same number of completely filled electron shells.
 - **D** The metallic character of the elements decreases from left to right across a period of the Periodic Table.
- **25** Which statement about the properties of the elements in Group 0 of the Periodic Table, helium to xenon, is correct?
 - **A** Argon reacts with iron to form a compound.
 - **B** Helium is less dense than air.
 - **C** The elements change from gas to solid down the group.
 - **D** The elements exist as covalent molecules.
- **26** Which property is common to ⁴⁰Ca, ³⁹K and ²³Na?
 - A Their atoms all have more neutrons than protons.
 - **B** Their ions all have eight electrons in their outer shell.
 - **C** They all sink when added to water.
 - **D** They are all deposited at the positive electrode when their molten chloride is electrolysed.
- 27 Which statement is true for all metals?
 - A They form alloys with other elements through chemical means.
 - **B** They form either amphoteric or basic oxides.
 - **C** They have a high density.
 - **D** They have a high melting point.
- 28 Which pair of substances, when added together, would result in heat being evolved?
 - **A** Ag(s) and $Cu(NO_3)_2$ (aq)
 - **B** Cu(s) and Mg(NO₃)₂ (aq)
 - **C** Mg(s) and $Ca(NO_3)_2(aq)$
 - **D** Zn(s) and $Cu(NO_3)_2$ (aq)

29 Scrap iron is often recycled.

Which reason for recycling is incorrect?

- A It reduces the amount of carbon dioxide formed at the site of the ore extraction.
- **B** It reduces the amount of waste taken to landfill sites.
- **C** It reduces the need to collect scrap iron.
- **D** It saves finite resources.
- **30** Mild steel is galvanised to prevent corrosion of the iron.

Which statements about galvanising are correct?

- 1 Galvanising makes a steel alloy.
- 2 Galvanising provides a sacrificial protection against rusting.
- 3 Galvanising coats a layer of zinc onto steel.
- A 1 and 2 only
- **B** 1 and 3 only
- **C** 2 and 3 only
- **D** 1, 2 and 3
- **31** A student wrote four statements about some of the gases that can be found in polluted or unpolluted air.
 - Carbon dioxide is absent in unpolluted air.
 - Dry air contains about 78% of oxygen.
 - Sulfur dioxide is released by volcanoes.
 - The noble gases make up about 5% of dry air.

How many statements are correct?

A 1 B 2 C 3	D 4
-------------	------------

32 Which row gives the correct problems associated with the gaseous pollutant in the atmosphere?

	pollutant	problems
Α	carbon monoxide	causes shortness of breath and hence death in humans
В	chlorofluorocarbons	more ultraviolet radiation reaches the Earth hence worsening global warming
С	nitrogen monoxide	acid rain
D	sulfur dioxide	irritates respiratory tract, causing bronchitis

33 Petroleum is separated into fractions by fractional distillation.

Some properties of three of these fractions are shown.

fraction	boiling point range / °C	number of carbon atoms in the molecules
1	?	5 - 10
2	320 - 350	16 – 24
3	120 – 210	?

Which statement is correct?

- **A** Fraction 1 has a higher boiling point than fraction 2.
- **B** Fraction 2 is removed from higher up the fractionating column than fraction 1.
- **C** Molecules in fraction 3 have shorter chains than those in fraction 2.
- **D** Fraction 2 is used as a fuel in cars.

34 The structure of alkene J is shown.

Four statements are made about alkene J.

- 1 Addition of hydrogen to J gives the alkane $(CH_3)_2CHCH(CH_3)_2$.
- 2 J can be manufactured by cracking.
- 3 J does not burn in air to form carbon dioxide and water.
- 4 The number of C–C single bonds is increased by reacting J with bromine.

Which statements are correct?

- A 1 and 3 only
- **B** 1 and 4 only
- C 2 and 3 only
- D 2 and 4 only
- 35 Which alkene, on addition of steam, can produce only **one** alcohol?
 - A CH₃CH=CH₂
 - **B** $CH_3CH_2CH=CH_2$
 - $C \qquad (CH_3)_2C=CHCH_3$
 - D (CH₃)₂C=C(CH₃)₂
- **36** Ethanol is made industrially by the fermentation of glucose or by the catalytic addition of steam to ethene.

Which statement describes an advantage of fermentation compared to catalytic addition?

- A Fermentation does not contribute to global warming.
- **B** Fermentation produces a higher yield of ethanol.
- **C** Fermentation produces pure ethanol.
- **D** Fermentation uses a renewable resource.

37 The structure of ester W is shown.

Which statement about ester W is incorrect?

- A Ester W can be used to make solvents.
- **B** Ester W is formed by a condensation reaction.
- **C** One mole of methanol reacts with one mole of ethanoic acid to give one mole of ester W and one mole of water.
- **D** Propanoic acid is an isomer of ester W.
- **38** The structure of an organic compound is shown.

Which statement about this organic compound is correct?

- A It gives off a sweet-smelling substance when reacted with a carboxylic acid.
- **B** It is a hydrocarbon.
- **C** It is polyunsaturated.
- **D** Its empirical formula is $C_8H_8O_2N$.

39 Hexane and hexene are organic compounds with the molecular formulae, C_6H_{14} and C_6H_{12} respectively.

Some properties of colourless liquid L and M are listed.

liquid L	liquid M
 When added to water, two	 When added to water, two
layers form which do not mix.	layers form which do not mix.
 It does not react with sodium	 It does not react with sodium
hydroxide.	hydroxide.
• It boils at 65 °C.	• It decolourises bromine water.

What could liquid L and M be?

	liquid L	liquid M
Α	ethanol	hexene
В	ethanol	ethane
С	hexane	ethene
D	hexene	hexene

40 P is a polymer that:

- has six carbon atoms in each of the monomers from which it is formed
- is not a polyester
- is non-biodegradable and suitable to use in parachutes and sleeping bags

What is the partial structure of P?

-End-

_																						_						
	0	₽ ∽	4 helium	10	Ne	neon 20	18	Ar	argon 40	36	Ϋ́	krypton 84	54	Xe	xenon 131	86	Rn	radon _					17	LU Iutetium	175	103	Ľ	lawrencium
	VII			6	Ŀ	fluorine 19	17	Cl	chlorine 35.5	35	Ъ	bromine 80	53	Ι	iodine 127	85	At	astatine 					70 7	1 U vtterbium	173	102	0 N	nobelium -
	۸I			80	0	oxygen 16	16	S	sulfur 32	34	Se	selenium 79	52	Те	tellurium 128	84	Ро	polonium –	116	۲ ۲	livermorium –		69 - 69	thulium	169	101	Md	mendelevium —
	^			7	z	nitrogen 14	15	٩	phosphorus 31	33	As	arsenic 75	51	Sb	antimony 122	83	Ξ	bismuth 209					68 ,	erbium	167	100	Е	fermium I
	N			9	ပ	carbon 12	4	Si	silicon 28	32	Ge	germanium 73	50	Sn	tin 119	82	Pb	lead 207	114	F/	flerovium -		67 LLo		165	66	Es	einsteinium –
				5	Ю	boron 11	13	Al	aluminium 27	31	Ga	gallium 70	49	In	indium 115	81	Tl	thallium 204					99	dvsprosium	163	98	റ്	californium -
										30	Zn	zinc 65	48	S	cadmium 112	80	Hg	mercury 201	112	ບົ	copernicium -		65 Tb	terbium	159	67	凝	berkelium –
Group										29	Cu	copper 64	47	Ag	silver 108	79	ΡN	gold 197	111	Rg	roentgenium 		64 0 1	gadolinium	157	96	СЗ	curium I
										28	Ż	nickel 59	46	Pd	palladium 106	78	Ŧ	platinum 195	110	Ds	darmstadtium —		63 E.:	europium	152	<u> </u>	Am	americium -
				_						27	ပိ	cobalt 59	45	Rh	rhodium 103	22	Ir	iridium 192	109	Mt	meitnerium —		62 C	samarium	150	64	Pu	plutonium –
		- I	hydrogen 1							26	Fe	iron 56	44	Ru	ruthenium 101	26	SO	osmium 190	108	Hs	hassium —		61 0	Dromethium	I	86	ЧN	neptunium –
				_						25	Mn	manganese 55	43	Tc	technetium -	75	Re	rhenium 186	107	Bh	bohrium —		60 60	neodvmium	144	92	⊃	uranium 238
				umber	loc	mass	0000			24	ບັ	chromium 52	42	Мо	molybdenum 96	74	N	tungsten 184	106	Sg	seaborgium —		59	PI praseodvmium	141	16	Ра	protactinium 231
			Key	(atomic) n	atomic symb	name ve atomic				23	>	vanadium 51	41	qN	niobium 03	73	Та	tantalum 181	105	Db	dubnium –		58 28	Cerium	140	06	T	thorium 232
				proton		relati	500-			22	i	titanium 48	40	Zr	zirconium 91	72	Ηf	hafnium 178	104	Rf	Rutherfordium —		57 1 0	lanthanum	139	68	Ac	actinium –
										21	Sc	scandium 45	39	≻	yttrium RQ	57 - 71	lanthanoids		89 - 103	actinoids			S					
	=			4	Be	beryllium 0	12	Mg	magnesium 24	20	Ca	calcium 40	38	ي م	strontium 88	56	Ba	barium 137	88	Ra	radium -		anthanoid			actinoids		
	_			3	:	lithium 7	11	Na	sodium 23	19	×	potassium 39	37	Rb	rubidium 85	55	Cs	caesium 133	87	Ľ	francium –		<u>.0</u>					

The Periodic Table of Elements

The volume of one mole of any gas is $24\,\text{dm}^3$ at room temperature and pressure (r.t.p.).