
Candidate Name:

H2 CHEMISTRY

Paper 4 Practical

30 August 2023 2 hours 30 minutes

Candidates answer on the Question paper.

READ THESE INSTRUCTIONS FIRST

Do not turn over this question paper until you are told to do so.

Write your name, class and admission number in the spaces at the top of this page. Write in dark blue or black pen. You may use an HB pencil for any diagrams or graphs. Do not use staples, paper clips, glue or correction fluid.

Answer **all** questions in the spaces provided on the Question Paper.

The use of an approved scientific calculator is expected, where appropriate. You may lose marks if you do not show your working or if you do not use appropriate units. Qualitative Analysis Notes are printed on pages 17 and 18.

At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [] at the end of each question or part question.

Question	1	2	3	Total
Marks				
	18	24	13	55

Class

millennia

9729/04

Answer all the questions in the spaces provided.

1 To determine the effect of concentration changes on the rate of a reaction

- FA 1, 0.0200 mol dm⁻³ aqueous potassium iodate(V), KIO₃
- FA 2, 0.0200 mol dm⁻³ aqueous sodium hydrogen sulfite, NaHSO₃
- FA 3, 0.0600 mol dm⁻³ aqueous sulfuric acid, H_2SO_4

FA 4 is starch solution

In this experiment, the Landolt-Iodine clock reaction is illustrated by the following equations.

$IO_3^- + 3HSO_3^- \rightarrow I^- + 3SO_4^{2-} + 3H^+$	equation 1
$\mathrm{IO}_3^- + 5\mathrm{I}^- + 6\mathrm{H}^+ \rightarrow 3\mathrm{I}_2 + 3\mathrm{H}_2\mathrm{O}$	equation 2
$3I_2 + 3HSO_3^- + 3H_2O \rightarrow 6I^- + 3SO_4^{2-} + 9H^+$	equation 3

Any I_2 produced in equation 2 while HSO₃⁻ ions still remain in the solution is rapidly reduced to I^- in equation 3. Once all the HSO₃⁻ ions have been used up, I_2 will accumulate in the solution. When this happens, the iodine can no longer be converted back to iodide ions. The presence of iodine can be confirmed from the blue-black colour produced upon addition of starch.

Overview of experiment

You will carry out **five** similar experiments, 1 to 5 with varying concentrations of IO_3^- . In each experiment, you will be required to prepare two solutions – **solution A** and **solution B**.

Note:

- Solution B should only be prepared once for all five experiments, while solution A must be prepared five times.
- Perform the experiments in order, from experiment 1 to 5.
- The measuring apparatus used to prepare **solutions A** and **B** must be kept separate at all times.

For each experiment, you will record the time taken, *t*, for the solution to turn blue-black. The rate of the reaction is given to be, $r = \frac{initial [HSO_3^-]}{t} \mod dm^{-3} s^{-1}$.

You will record in a table in the space provided on **page 4**, the following values for **each** of the five experiments.

- all volumes of FA 1 and deionised water used to prepare solution A,
- values of *t*, to the nearest second,
- calculated values of initial [IO₃⁻] in the reaction mixture to 3 significant figures, and
- calculated values of *r*, to 3 significant figures.

Note: volumes used to prepare solution **B** need not be recorded.

(a) (i) Preparing solution B

- 1. Using a pipette, transfer 25.0 cm³ of **FA 2** to the 250 cm³ volumetric flask.
- 2. Using an appropriate measuring cylinder, transfer to the same volumetric flask
 - $50.0 \text{ cm}^3 \text{ of } \mathbf{FA4}$, then,
 - 50.0 cm³ of **FA 3**.
- Make up the solution to 250 cm³ with deionised water and **mix thoroughly**. This is solution **B**.

(ii) Preparing solution A

- 1. Fill a burette with **FA 1**.
- 2. Fill another burette with deionised water.
- Transfer 10.00 cm³ of FA 1, followed by 10.00 cm³ of deionised water into a 100 cm³ conical flask. This is solution A.

(iii) Experiment 1

- 1. Using an appropriate measuring cylinder, measure out 10.0 cm³ of **solution B**.
- 2. Add **solution B** from the measuring cylinder into the conical flask containing **solution A**. Swirl and start the stopwatch immediately upon mixing.
- 3. Stop the stopwatch when the end-point is reached.
- 4. Record this value of *t*, to the nearest second.

At the end of experiment 1, wash the conical flask and allow it to stand to drain on a paper towel.

(iv) Experiments 2 to 5

- 1. Repeat step 3 in (a)(ii) and the procedures in (a)(iii) a further four times to perform experiments 2 to 5.
- 2. In step 3 in (a)(ii), you are to use different volumes of FA 1 and deionised water to prepare a different solution A for each experiment. You should use a minimum volume of 2.00 cm³ of FA 1 and a maximum volume of 10.00 cm³ of FA 1. By adding the appropriate volume of deionised water, ensure that the total volume of solution A is always 20.00 cm³.

(b) The concentration of FA 2 in the reaction mixture remains the same in each experiment.

(i) Calculate the amount of **FA 2**, HSO₃, in 250 cm³ of **solution B**.

Amount of FA2 added into the volumetric flask = 25/1000 x 0.02 = 0.000500 mol

amount of **FA 2** in 250 cm^3 =[1]

(ii) Calculate the amount of **FA 2**, HSO₃⁻, in 10.0 cm³ of **solution B** that was measured out for reaction.

Amount of HSO_3^{-1} in 10 cm³ = 0.000500 / 25 = 2.00 x 10⁻⁵ mol;

amount of **FA 2** in 10.0 cm³ =[1]

(iii) Hence, determine the concentration of FA 2, [HSO₃⁻], in each reaction mixture.

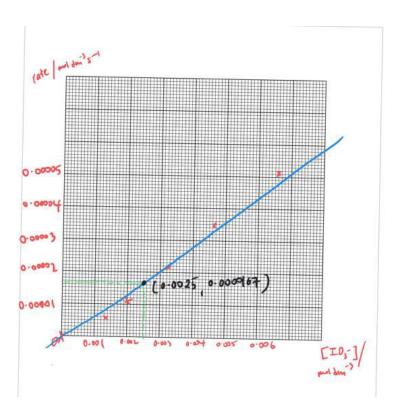
[FA 2] in each reaction mixture = $(2.00 \times 10^{-5}) / (30/1000) = 6.67 \times 10^{-4} \text{ mol dm}^{-3}$

[**FA 2**] =[1]

(c) Results

	Vol of FA1 /cm ³	Vol of H ₂ O /cm ³	t/s	initial [IO ₃ ⁻] / mol dm ⁻³	r / mol dm ⁻³ s ⁻¹
1	10.00	10.00	13	0.00667	0.0000513
2	7.00	13.00	19	0.00467	0.0000351
3	5.00	15.00	31	0.00333	0.0000215
4	3.00	17.00	63	0.00200	0.0000106
5	2.00	18.00	110	0.00133	0.0000607

Total volume for each experiment = 30.0 cm^3


Table with correct headers and units – 1m Correct precision (2dp for volumes, nearest sec for t, 3sf for calculated values) – 1m Appropriate volumes of FA 1 chosen and correct volume of water added – 1m Correct calculation of $[IO_3^-]$ to 3sf - 1mCorrect calculation of r to 3sf - 1m

<u>Sample calculation of initial [IO₃⁻] for Expt 1</u> Amount of FA1 added = $10/1000 \times 0.02 = 0.000200$ mol [IO₃⁻] = 0.000200 / (30/1000) = 0.00667 mol dm⁻³ (d) Plot a graph of rate, r, on the *y*-axis against initial $[IO_3^-]$ on the *x*-axis. Draw an appropriate line taking into account all of your plotted points.

1m for axes and label 1m for correctly plotted points 1m for best fit (line to take into

1m for best fit (line to take into consideration coordinate 0,0)

[3]

(e) (i) The rate equation for the reaction is shown below.

$$r = k [H^+][HSO_3^-][IO_3^-]^x$$

Use your graph to deduce the order of reaction, \boldsymbol{x} , with respect to the concentration of IO_3^- ions.

(ii) Hence, calculate the value of the rate constant, *k*, given that the [H⁺] in each reaction mixture is 0.00800 mol dm⁻³. State the units of *k* clearly.

Using expt 1,

 $0.0000513 = k (0.008)(6.67 \times 10^{-4})(0.00667)$ k = 1440 mol⁻² dm⁶ s⁻¹

1m for answer 1m for units *e.c.f awarded*

k =[2]

(iii) Using your graph, calculate the volume of **FA 1** needed to prepare **solution A** so that the reaction mixture turns blue-black after 40 seconds.

 $r = \frac{initial [HSO_3^-]}{t}$ r = (6.67 x 10⁻⁴) / 40 = 0.0000167 To read from graph the corresponding value of [IO₃⁻] = 0.0025 mol dm⁻³; Amount of FA 1 = 0.0025 x 30/1000 = 0.0000750 mol Volume of FA 1 = 0.000075 / 0.02 = 3.75 cm³;

volume of **FA1** required =[2]

(f) Student Z performed experiment 1 but she accidentally added less water to the conical flask in (a)(ii). State and explain how the value of *t* obtained for student Z is likely to differ from another student who prepared the reaction mixture correctly.

When less water was added to the boiling tubes, the concentration of the resulting solution will be larger. A higher concentration will lead to a faster rate of reaction, thus the value of t obtained by student **Z** will be smaller. ;

.....[1]

[Total: 18]

2 To determine the percentage composition of Na₂CO₃ in a mixture

FA 5 is a solid mixture of Na₂CO₃ and NaCl

FA 6 is a 0.100 mol dm⁻³ aqueous solution of sulfuric acid, H₂SO₄

FA 7 is Methyl orange indicator

Sulfuric acid only reacts with Na₂CO₃ but not with NaCl, according to the equation shown.

 $H_2SO_4(aq) + Na_2CO_3(aq) \rightarrow Na_2SO_4(aq) + H_2O(l) + CO_2(g)$

(a) (i) Preparation of a standard solution, FA 8

- 1. Weigh accurately 5.00 g of **FA 5** into a weighing bottle. Record your readings in an appropriate table on **page 9**.
- 2. Transfer the weighed **FA 5** to a small beaker. Add deionised water and stir the solution with a glass rod to dissolve all the solid.
- 3. Transfer the solution into a 250 cm³ volumetric flask.
- 4. Rinse the beaker with deionised water and add the rinsing to the volumetric flask to ensure all **FA 5** have been transferred.
- 5. Make up the contents of the flask to the 250 cm³ mark with deionised water.
- 6. Place the stopper in the flask and mix the contents thoroughly. This solution is **FA 8**.

(ii) Titration

- 1. Fill a burette with FA 6.
- 2. Pipette 25.0 cm³ of **FA 8** into a conical flask.
- 3. Add to the flask 2-3 drops of methyl orange indicator and titrate with **FA 6** until the end point is reached.
- 4. Repeat the titration as necessary to obtain consistent results.

Record all measurements of mass and your titration results on page 9.

(b) Results

Mass of empty weighing bottle / g	
Mass of weighing bottle and FA 5 / g	
Mass of FA 5 used / g	4.96

	1	2
Final burette reading / cm ³	23.10	23.10
Initial burette reading / cm ³	0.00	0.00
Volume of FA6 used / cm ³	23.10	23.10
	\checkmark	\checkmark

Table has correct headers and units. (1m for mass, 1m for burette readings);;

All burette readings and volumes are correctly recorded to the nearest 0.05 cm³. ;

All mass readings correctly recorded to 2dp (following weighing balance);

At least 2 consistent readings within ± 0.10 cm³.;

Accuracy - if student's value is ± 0.40 cm³ of teacher's value (marker to decide range);

(c) (i) From your titration results, obtain a **suitable** volume of **FA 6** to be used in your calculations.

Average volume of **FA 6** = $(23.10 + 23.10) / 2 = 23.10 \text{ cm}^3$

volume of **FA 6** =[1]

(ii) Calculate the amount of Na_2CO_3 in 25.0 cm³ of **FA 8**.

Amount of Na_2CO_3 in 25.0 cm³ = amount of FA 6 = 23.10/1000 x 0.1 = 0.00231 mol ;

(iii) Calculate the amount of Na_2CO_3 in 250.0 cm³ of **FA 8**.

Amount of Na_2CO_3 in 250.0 cm³ = 0.00231 x 10 = 0.0231 mol

[6]

amount of Na_2CO_3 in 250.0 cm³ of **FA 8** =[1]

(iv) Calculate the percentage by mass of Na_2CO_3 in **FA 5**.

Mass of Na₂CO₃ in 250.0 cm³ = 0.0231 x (23 + 23 + 12 + 16 + 16 + 16) = 2.449 g ; % by mass = $(2.449 / 4.96) \times 100\% = 49.4\%$;

(d) When preparing standard solutions, it is incorrect to use a dropper to remove some solution should the mark on the volumetric flask be exceeded.
 Explain the effect of this incorrect method of preparation on the volume of FA 6 used for titration and the percentage by mass of Na₂CO₃ calculated.

(e) Planning

When sodium hydrogencarbonate, NaHCO₃, is heated, it decomposes to form sodium carbonate, Na₂CO₃.

$$2NaHCO_{3}(s) \rightarrow Na_{2}CO_{3}(s) + H_{2}O(l) + CO_{2}(g) \qquad \Delta H_{r}$$

The enthalpy change of reaction, ΔH_r , for the thermal decomposition of NaHCO₃ cannot be determined directly and so an indirect method is used.

By determining the enthalpy change of reaction between Na₂CO₃(s) and hydrochloric acid, ΔH_1 , and that between NaHCO₃(s) and hydrochloric acid, ΔH_2 , a value for ΔH_r for the thermal decomposition of NaHCO₃ can be obtained.

Reaction between NaHCO₃(s) and hydrochloric acid, ΔH_2

$$NaHCO_3(s) + HCl(aq) \rightarrow NaCl(aq) + H_2O(l) + CO_2(g)$$
 $\Delta H_2 > 0$

The reaction between $NaHCO_3(s)$ and HCl(aq) is an endothermic process.

The maximum temperature change occurring during this reaction may be determined graphically. The maximum temperature change, ΔT , obtained from the graph can be used to calculate the heat change, q, for this experiment. Using q, a value for ΔH_2 may be determined.

(i) Outline how you would carry out an experiment to determine the maximum temperature change, ΔT , graphically for the reaction between NaHCO₃(s) and HC*l*(aq) in order to determine a value for ΔH_2 .

Your answer should include details of:

- the apparatus used,
- calculations to determine the appropriate quantities of reagents used,
- the experimental procedure,
- the measurements taken to allow a suitable temperature-time graph to be drawn.

Assume that you are provided with:

- 150 cm³ of 2.00 mol dm⁻³ hydrochloric acid, HC*l*(aq),
- 10.0 g of solid sodium hydrogencarbonate, NaHCO₃(s),
- the equipment normally found in a school laboratory.

- 1. Weigh an empty weighing bottle using an electronic weighing balance.
- **2.** Weigh accurately <u>6.00 g of solid NaHCO₃ into the weighing bottle and record the mass.</u>
- **3.** Using a 50 cm³ measuring cylinder, add <u>50.0 cm³ of HC*l*(aq)</u> into the styrofoam cup supported in a big beaker.
- **4.** Stir the HC/(aq) in the cup using the 0.2 °C interval thermometer and record the initial temperature of the solution
- **5.** Start the stopwatch. Record the temperature of the solution in the styrofoam cup at 30 s intervals until 2.5 min.
- **6.** At exactly 3 min, tip the weighed NaHCO₃ into the styrofoam cup and cover the cup with a lid.
- **7.** Stir the contents in the styrofoam cup with the thermometer and record the temperature of the solution at 3.5 min. Continue to stir the contents in the styrofoam cup and record the temperature of the solution at 30 s intervals until 10.0 min.
- **8.** Re-weigh the weighing bottle to find out the actual mass NaHCO₃ added to the styrofoam cup.

Pre-calculations:

Points 2 and 3

For 50.0 cm³ of HC/(aq) = $50/1000 \times 2 = 0.1 \text{ mol}$ (acid in excess)

For 50.0 cm³ of HC*I*(aq), mass of NaHCO₃ needed = 8.4 g

Suggested marking points:

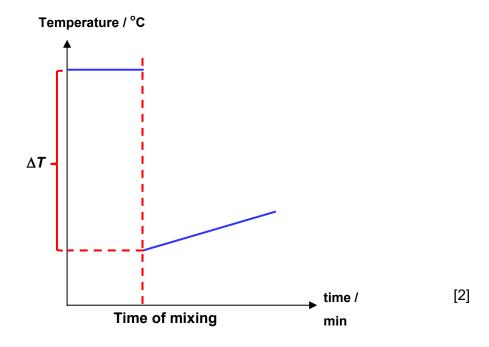
M1: NaHCO₃

- Use of weighing balance, takes appropriate measurements of mass including reweighing, transfer of solid into cup

M2: HC*l*

- Use of appropriate measuring cylinder to measure HCl

M3: Use of glass beaker to support cup + mention of insulation (either using two cups or use of a lid) + use of stopwatch


M4: Use of appropriate thermometer and measuring initial temperature from 0 - 2.5 min every 30s.

M5: Add reactant at the 3rd min and measure temperature from the 3.5 min for every 30s until the 10 min mark.

M6: Pre-calculations to determine the quantity of both reactants to use, showing LR clearly

(ii) Sketch the graph you would expect to obtain in (e)(i).

Indicate how the maximum temperature change, ΔT , can be determined on the graph.

1*m* for two best lines (including extrapolation) 1*m* for showing ΔT and correct axes

(iii) Suggest one reason why the graphical method gives an accurate and reliable value for determining a value of ΔT .

The extrapolation of the graph to the 'time of mixing' has accounted for the heat gained by the surroundings.

.....[1]

(iv) Student **Z** carried out two separate experiments and obtained the following values for ΔH_1 and ΔH_2 .

$$Na_{2}CO_{3}(s) + 2HCl(aq) \rightarrow 2NaCl(aq) + H_{2}O(l) + CO_{2}(g) \qquad \Delta H_{1} = -26.7 \text{ kJ mol}^{-1}$$

$$NaHCO_{3}(s) + HCl(aq) \rightarrow NaCl(aq) + H_{2}O(l) + CO_{2}(g) \qquad \Delta H_{2} = +24.2 \text{ kJ mol}^{-1}$$

Using these values of ΔH_1 and ΔH_2 , construct an energy cycle to determine a value for the enthalpy change of reaction, ΔH_r , for the decomposition of NaHCO₃(s).

 $2NaHCO_3(s) \rightarrow Na_2CO_3(s) + H_2O(l) + CO_2(g) \Delta H_r$

$$2NaHCO_{3}(s) \rightarrow Na_{2}CO_{3}(s) + H_{2}O(l) + CO_{2}(g)$$

$$+ 2HCl(aq) \qquad 2\Delta H_{2} \qquad \Delta H_{1} + 2HCl(aq)$$

$$2NaCl(aq) + 2H_{2}O(l) + 2CO_{2}(g)$$

$$\Delta H_{\rm r} = 2\Delta H_2 - \Delta H_1$$

= 2(+24.2) - (-26.7)
= +75.1 kJ mol⁻¹

1m for energy cycle 1m for hess law and final answer with sign and units

Δ*H*_r =[2]

[Total: 24]

3 Organic Qualitative Analysis

FA 9 is a solution containing an organic compound with the formula $C_4H_8O_2$.

FA 10 is a solution containing an organic compound with two functional groups.

Perform the tests described in the table below and record your observations clearly. Some observations have been recorded for you.

Do not use Bunsen burner for heating. Use the hot water provided from the boiler.

	tests	observations for FA 9	observations for FA 10
(i)	Place about 2 cm depth of aqueous sulfuric acid in a test-tube.	Purple KMnO ₄ decolourised ;	Purple KMnO ₄ decolourised ;
	To this test-tube, add 10 drops of FA , followed by 1 drop of aqueous potassium manganate(VII).		
	Warm the mixture in the hot water bath for five minutes.		
(ii)	Place about 2 cm depth of aqueous silver nitrate in a test-tube.	No silver mirror / no silver ppt observed ;	Silver mirror / silver ppt observed :
	To this test-tube, add 10 drops of aqueous sodium hydroxide, followed by aqueous ammonia until a clear solution is formed.		
	To this test-tube, add 10 drops of FA .		
	Warm the mixture in the water bath for two minutes.		
(iii)	Place about 1 cm depth of deionised water in a test- tube. To this test-tube, add 10 drops of FA and add 10 drops of aqueous sodium hydroxide. Now add iodine solution dropwise, until a permanent yellow/ orange colour is obtained.	Yellow ppt obtained ;	No yellow ppt obtained ;
	Warm the mixture in the water bath for two minutes.		

(b) In addition to the tests in (a), a student carried out a further test and obtained the following observations.

test	observations for FA 9	observations for FA 10
To 1 cm depth of FA in a test-tube,	orange ppt formed	a small quantity of
add 2,4-dinitrophenylhydrazine		orange ppt formed
dropwise.		

Using all the observations in (a) and (b), identify two functional groups present in **FA 9** and **FA 10**. Give evidence(s) to support your answer and state the type of reaction that took place.

	1 st functional group	evidence & type of reaction
FA 9	Primary or Secondary alcohol ;	It undergoes <u>oxidation</u> with acidified KMnO ₄ and <u>decolourises purple</u> KMnO ₄ . ;
	2 nd functional group	evidence & type of reaction
	Ketone ;	It undergoes <u>condensation</u> with 2,4-DNPH to give an orange ppt. but it does not undergo oxidation/react with Tollens' reagent to give a silver mirror. ;
FA 10	1 st functional group	evidence & type of reaction
	Primary or Secondary alcohol	It undergoes oxidation with acidified KMnO ₄ and decolourises purple KMnO ₄ .
		(no marks awarded for this as same as above)
	2 nd functional group	evidence & type of reaction
	Aldehyde ;	It undergoes <u>oxidation</u> and react with Tollens' reagent to give a silver mirror. ;
		[6]

(c) Suggest and draw one possible structure of **FA 9**.

CH₂OHCH₂COCH₃

OR

CH₃CH(OH)COCH₃

[1]

End of Paper 4

Qualitative Analysis Notes [ppt. = precipitate]

(a) Reactions of aqueous cations

	reaction with			
cation	NaOH(aq)	NH ₃ (aq)		
aluminium, Al ³⁺ (aq)	white ppt. soluble in excess	white ppt. insoluble in excess		
ammonium, NH₄⁺(aq)	ammonia produced on heating	_		
barium, Ba ²⁺ (aq)	no ppt. (if reagents are pure)	no ppt.		
calcium, Ca ²⁺ (aq)	white ppt. with high [Ca ²⁺ (aq)]	no ppt.		
chromium(III), Cr ^{3⁺} (aq)	grey-green ppt. soluble in excess giving dark green solution	grey-green ppt. insoluble in excess		
copper(II), Cu ²⁺ (aq)	pale blue ppt. insoluble in excess	blue ppt. soluble in excess giving dark blue solution		
iron(II), Fe ²⁺ (aq)	green ppt., turning brown on contact with air insoluble in excess	green ppt., turning brown on contact with air insoluble in excess		
iron(III), Fe ³⁺ (aq)	red-brown ppt. insoluble in excess	red-brown ppt. insoluble in excess		
magnesium, Mg ²⁺ (aq)	white ppt. insoluble in excess	white ppt. insoluble in excess		
manganese(II), Mn ²⁺ (aq)	off-white ppt., rapidly turning brown on contact with air insoluble in excess	off-white ppt., rapidly turning brown on contact with air insoluble in excess		
zinc, Zn ²⁺ (aq)	white ppt. soluble in excess	white ppt. soluble in excess		

(b) Reactions of anions

anion	reaction
carbonate, CO ₃ ^{2–}	CO ₂ liberated by dilute acids
chloride, C <i>l</i> ⁻(aq)	gives white ppt. with Ag ⁺ (aq) (soluble in NH ₃ (aq))
bromide, Br⁻(aq)	gives pale cream ppt. with Ag $^{+}(aq)$ (partially soluble in NH $_{3}(aq)$)
iodide, I⁻(aq)	gives yellow ppt. with Ag ⁺ (aq) (insoluble in $NH_3(aq)$)
nitrate, NO₃ [−] (aq)	NH_3 liberated on heating with $OH^-(aq)$ and Al foil
nitrite, NO₂⁻(aq)	NH_3 liberated on heating with $OH^-(aq)$ and Al foil; NO liberated by dilute acids (colourless NO \rightarrow (pale) brown NO_2 in air)
sulfate, SO ₄ ^{2–} (aq)	gives white ppt. with Ba ²⁺ (aq) (insoluble in excess dilute strong acids)
sulfite, SO ₃ ^{2–} (aq)	SO_2 liberated with dilute acids; gives white ppt. with $Ba^{2^+}(aq)$ (soluble in dilute strong acids)

(c) Tests for gases

gas	test and test result		
ammonia, NH ₃	turns damp red litmus paper blue		
carbon dioxide, CO ₂	gives a white ppt. with limewater (ppt. dissolves with excess CO ₂)		
chlorine, Cl_2	bleaches damp litmus paper		
hydrogen, H ₂	"pops" with lighted splint		
oxygen, O ₂	relights a glowing splint		
sulfur dioxide, SO_2	turns aqueous acidified potassium manganate(VII) from purple to colourless		

(d) Colour of halogens

halogen	colour of element	colour in aqueous solution	colour in hexane
chlorine, Cl_2	greenish yellow gas	pale yellow	pale yellow
bromine, Br ₂	reddish brown gas / liquid	orange	orange-red
iodine, I ₂	black solid / purple gas	brown	purple