
Name:	Index Number:	Class:

4G2	HUA YI SECONDARY SCHOOL Preliminary Examination 2024 MATHEMATICS Paper 2	4G2

This document consists of **7** printed pages including the cover page. © HYSS 2024

No part of this document may be reproduced in any form or transmitted in any form or by any means without the prior permission of Hua Yi Secondary School.

[Turn Over

Qn	Suggested Solution	Mark Allocation
1ai	Not all the powers of the prime factors are even numbers/multiples of 2.	B1
1aii	$k = 2 \times 3 \times 11^2$	
	= 726	B1
1bi	2 2100	
	2 1050	
	3 525	
	5 175	
	5 35	
	7 7	
	1	M1
	$2100 = 2^2 \times 3 \times 5^2 \times 7$	A1
1bii	$HCF = 2^2 \times 3$	
	=12	B1 (<i>ecf</i>)
2	$\frac{(70 \times 2.5) + (2x)}{10} = 80$	M1
	4.5	M1
	$ \begin{array}{r} 175 + 2x = 360 \\ 2x = 185 \end{array} $	1/11
	x = 92.5	A1
3	$10506.25 = 10000 \left(1 + \frac{p}{100}\right)^2$	M1
	$1.050625 = \left(1 + \frac{p}{100}\right)^2$	
	$1 + \frac{p}{100} = 1.025$	M1
	<i>p</i> = 2.5	A1
4 a	*M1 – multiplication frame $2x^2 = 0$ = 5 = (2x+1)(x=5)	M1 A1
4 b	$2x^{2} - 9x - 5 = (2x + 1)(x - 5)$	A1
40	$2x^{2} - 18y^{2} = 2(x^{2} - 9y^{2})$	1/1 1
	$=2\left[x^2-(3y)^2\right]$	
	=2(x+3y)(x-3y)	A1

5a	5 <i>cm</i> :1 <i>km</i>	
	5cm:100000cm	
	1:20000	B1
5b	5cm:1km 25cm2:1km2 Or 200cm2:8km2 $5cm:1km 1cm:0.2km 1cm2:0.04km2$	M1 A1
(-	$\frac{200 cm^2 : 8km^2}{200 cm^2 : 8km^2}$	
6a	$XZ^{2} + XY^{2} = 20^{2} + 99^{2} = 10201$ $YZ^{2} = 101^{2} = 10201$ Since $XZ^{2} + XY^{2} = YZ^{2}$, XYZ is a right-angled triangle.	B1
бb	$\cos \angle XYZ = \frac{99}{101}$ $\angle XYZ = 11.4211$ Let the shortest distance from X to YZ be h.	M1
	$\sin 11.4211 = \frac{h}{99}$ h = 19.603 h = 19.6m(3sf)	M1
7a		A1
/a	Die Coin 1 head 2 head tail head	A1 (for the 6 outcomes for the die) A1 (for the outcomes for the coin)
	3 head $4 $ head $5 $ head $6 $ head $4 $ head head head head head head head head	*wont penalise students if they write the probabilities/write the probabilities wrongly
7bi		B1
/ 01	$\frac{3}{12} = \frac{1}{4}$	D1
7bii	0	B1
8a	3	B1

8b		1m at least 8points plottedcorrectly1m smooth curvedrawn
8c	$x = -2.1, 4.6(\pm 0.1)$	B2
8d	The minimum/lowest point of the curve is at $y = -7$, so there will not be any point below $y = -7$.	B1
8e	Drawing of tangent correctly	B1
	$gradient = \frac{1 - (-12)}{4.2 - 0}$ = 3.0952 = 3.10(3sf)	B1
9ai	$\$\left(\frac{300}{x}\right)$	B1
9aii	$\$\left(\frac{300}{x}+1.5\right)$	B1
9b	$\left(\frac{300}{x}+1.5\right)(x-30) = 360$ $300 - \frac{9000}{x}+1.5x-45 = 360$ $-\frac{9000}{x}+1.5x-105 = 0$ $-9000+1.5x^{2}-105x = 0$ $x^{2} - 70x - 6000 = 0$	M1 (form eqn) M1 (expansion) A1
9c	$x^{2} - 70x - 6000 = 0$ (x-120)(x+50) = 0 x = 120 or x = -50	M1 (or any other method) A1
9d	<i>x</i> represents the number of T-shirts and it cannot be a negative	B1 (or any logical
	number.	explanation)

10a	<i>Volume</i> = $\pi (1.75)^2 (2.4)$	
	= 23.0907	
	$= 23.1 cm^3 (3sf)$	B1
10b	Volume of 1 pocket = $3.5 \times 2.4 \times 3.5$	M1
	$= 29.4 cm^{3}$	
	<i>Volume of total air</i> = $6(29.4 - 23.0907)$	
	= 37.8558	
	$= 37.9 cm^3 (3sf)$	A1
	Alternative: can take the volume of whole box – volume of	
	macarons	
10ci	For 12 macarons,	
	$\cos t \text{ of almond flour} = \frac{30}{1000} \times 65$ $= \$1.95$	
	$\cos t of powdered sugar = \frac{2.5}{1000} \times 65$ $= \$0.1625$	
	$\cos t of \ castor \ sugar = \frac{2.6}{800} \times 45$ $= \$0.14625$	M1 (any 2 correct)
	$\cos t of egg whites = \frac{2.5}{12} \times 2$ $= \$0.4167$	
	$total \cos t \text{ of ingredients} = \frac{1}{2} (1.95 + 0.1625 + 0.14625 + 0.4167)$ $= \$1.3377$ $total \cos t \text{ price} = 1.3377 + 2.80 + 1.65 + 0.40$ $= \$6.1877$	M1 (finding total cost of 6 macarons, ecf) M1 (add packing, ecf)
	= \$6.19(<i>nearest cent</i>)	A1
10cii	$\frac{72}{6} = 12 boxes$	
	$total \cos t \ price \ with \ delivery = \$6.1877 \times 12 + \$10$	M1 (ecf from (cii))
	= \$84.2524	M1 (<i>ecf</i>)
	selling price = $$84.2524 \times 130\%$ = $$109.528$	
	= \$109.528 $= $110(nearest dollar)$	
	- \$110(neuresi uonur)	A1

11a	Bearing of A from $C = 360^{\circ} - (180^{\circ} - 105^{\circ})$	
	$= 285^{\circ}$	B1
11b	$\angle BAC = 180^{\circ} - 105^{\circ}$	
110	$=75^{\circ}$	
	$BC^{2} = 78^{2} + 80^{2} - 2(78)(80)\cos 75^{\circ}$	M1 (<i>ecf</i>)
	$BC^2 = 9253.938$	
	BC = 96.197	
	$\frac{\sin \angle ACB}{20} = \frac{\sin 75^{\circ}}{0.000}$	M1 (<i>ecf</i>)
	$ \begin{array}{c} 80 & 96.1973 \\ \sin \angle ACB = 0.80328 \end{array} $	
	$\angle ACB = 53.445$	
		A1
11	$= 53.4^{\circ}(1dp)$	
11c	Area of $\triangle ABC = \frac{1}{2}(78)(80)\sin 75^\circ$	M1
	= 3013.688	
	$= 3010m^2(3sf)$	A1
11.1		
11d	let the angle of elevation be x . balloon	
	180	M1
	$\tan x = \frac{180}{78}$ 180	
	x = 66.571 x	
	$= 66.6^{\circ}(1dp) \qquad \qquad A \stackrel{\frown}{} 78 \stackrel{\frown}{} C$	A1
12ai	*For Qn 12, deduct one mark overall if reasons are missing or	
	wrong	
	$\angle BDC = 44^{\circ}$	
	Reason: angles in same segment	B1
12aii	$\angle ADC = 180^{\circ} - 58^{\circ} = 122^{\circ}$	D1
106	Reason: angles in opp segment $\angle ADB = 122^{\circ} - 44^{\circ}$	B1
12bi	$ \angle ADB = 122^\circ - 44^\circ $ $= 78^\circ $	
		M1 (either step)
	$\angle BAD = 90^{\circ} \text{ (angle in a semicircle)}$ $\angle ABD = 180^{\circ} - 90^{\circ} - 78^{\circ}$	(currer step)
		A1
	$=12^{\circ}(\angle sum of \Delta)$	

		1
12bii	$\angle ACB = 180^{\circ} - 44^{\circ} - 58^{\circ} (\angle sum of \Delta)$	M1
	= 78°	
	Or	
	$\angle ACB = 78^{\circ}(angles in same segment)$	N/1
	$\angle AOB = 78^{\circ} \times 2(\angle at \ centre = 2 \angle at \ circumference)$	M1
	=156°	
	$\angle ATB = 360^{\circ} - 156^{\circ} - 90^{\circ} - 90^{\circ} (\tan gent \perp radius, \angle sum of quad)$	
	= 24°	A1
	Or any other method	
12c	ΔATO and ΔBTO are congruent triangles.	B1
13ai	\$55 or \$54	B1
13aii	$Q_1 = 38	
	$Q_3 = \$71$	
	IQR = \$71 - \$38	M1
	= \$33	A1
13aiii	70% ×160 = 112	
	$70^{\text{th}} \text{ percentile} = \68	B1
13b	Number of workers who earn more than $60 = 160 - 94 = 66$	M1 (either finding
		66 or multiplying the
	66 65 143	probability (ecf)
	$\frac{66}{160} \times \frac{65}{159} = \frac{143}{848}$	<i>correctly</i>)
		A1
13ci	The <u>inter-quartile range is lower</u> in company <i>A</i> , so the <u>wage is</u>	B1
	more consistent/has a smaller spread.	
13cii	The median wage in company <i>B</i> is higher so I will earn more .	B1