DARRELL ER (COPYRIGHTED) ©

"What one man calls God, another calls the laws of physics."

-Nikola Tesla

TOPIC 4: MASS, WEIGHT, DENSITY

- Straightforward topic
- Study definitions
- Need to be careful about units & conversions

CHAPTER ANALYSIS

EXAM

- Tested in MCQ and Section A
- Important chapter that is closely linked to chapter like Force & Work Done

- Light overall weightage
- Constitute to around 2.5% of marks for past 5 year papers

KEY CONCEPT

MASS & WEIGHT GRAVITATIONAL FIELD DENSITY

MASS & WEIGHT

My WEIGHT on the moon is around 90N

My MASS is always 56kg!!

	Mass	Weight
Definition	Mass is defined as the amount of substance in a body.	Weight is a measure of the gravitational force acting on an object due to the gravitational field.
SI Unit	kg	N
Quantity	Scalar quantity	Vector quantity
Formula		W = mg
Gravity	Mass is constant & is not affected by gravity.	Weight is dependent on the gravitational field.
Measurement	Beam Balance Lever Balance Electronic Balance	Spring Balance

Gravitational Field

Gravitational field is a region of space where a **body with mass** will **experience gravitational force** due to gravitational attraction.

Gravitational field strength, g, is defined as the gravitational force per unit mass.

Formula:

2 -175,089215188429 25 -2,19879118230506 -12,5 -10,9929558115253

DENSITY

$$p = \frac{m}{v_{\text{olume}}}$$

13.6
$$\frac{g}{cm^3}$$
 = 13.6× $\frac{g}{cm^3}$ × $\frac{10^{-3} \text{ Kg}}{g}$ × $\frac{cm^3}{10^{-6} \text{ m}^3}$
∴ 13.6 g/cm³ = 13.6×10³ Kg/m³

Density

Density is defined as mass per unit volume. (Unit: kgm⁻³)

Conversion:

1 kg = 1000 g
1 g =
$$\frac{1}{1000}$$
 kg = 10⁻³ kg

1 m = 100 cm
1 m³ = (100)³ cm³ = 10⁶ cm³
1 cm³ =
$$\frac{1}{10^6}$$
 m³ = 10⁻⁶ m³

$$1 \frac{g}{cm^3} = \frac{10^{-3} \text{ kg}}{10^{-6} \text{ m}^3} = 10^3 \frac{\text{kg}}{\text{m}^3}$$
$$\therefore 2.70 \frac{g}{cm^3} = 2.70 \times 10^3 \frac{\text{kg}}{\text{m}^3} = 2700 \frac{\text{kg}}{\text{m}^3}$$

Conversion tips:

- 1 gcm⁻³ = 1000 kgm⁻³
- $1 \text{ kgm}^{-3} = 0.001 \text{ gcm}^{-3}$

For more notes & learning materials, visit:

www.overmugged.com

Join our telegram channel:

<u>@overmugged</u>

Need help?

Darrell Er (Private tutor with 8 years of experience)

8777 0921 (Whatsapp)

<u>@DarrellEr</u>

(telegram username)

'O' levels crash course program

Professionally designed crash course to help you get a condensed revision before your 'O' Levels!

The **4 hour session** focuses on going through **key concepts** and **identifying commonly tested questions!**

Our **specialist tutors** will also impart valuable **exam pointers and tips** to help you maximise your preparation and ace your upcoming national exam!

The crash courses will begin in June 2021 and last till Oct 2021.

Pre-register now on our website and secure your slots!

