2012 DHS Preliminary Examination H2 Chemistry 9647/01 Answer Key

Question Number	Key	Question Number	Key
1	В	21	С
2	D	22	D
3	D	23	В
4	С	24	Α
5	D	25	Α
6	С	26	С
7	С	27	В
8	Α	28	С
9	В	29	D
10	Α	30	Α
11	Α	31	Α
12	С	32	D
13	D	33	Α
14	D	34	В
15	В	35	В

2012 DHS Preliminary Examination H2 Chemistry 9647/01 Solutions

Section A

1 B

 $\mathsf{Ag^+}_{\mathsf{unreacted}} + \mathsf{SCN^-} {\rightarrow} \mathsf{AgSCN}$

Moles of Ag⁺unreacted

= No. of moles of SCN⁻ 3 64

 $= \frac{3.64}{1000} \times 0.054 = 1.9656 \times 10^{-4} \,\mathrm{mol}$

 $3Ag^{+}_{reacted} + AsO_4^{3-} \rightarrow Ag_3AsO_4$

Moles of Ag⁺_{reacted} = (1.25 x 10⁻³) – 1.9656 x 10⁻⁴ = 1.053 x 10⁻³ mol

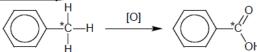
Moles of As = Moles of AsO 4^{3-} = 1/3 x 1.053 x 10⁻³ Mass of As = 1/3 x 1.053 x 10⁻³ x 74.9 = 0.026g

2 D

Extent of deflection $\propto \frac{q}{m}$

(charge is denoted by q; mass is denoted by m)

Cations will be deflected towards the negative plate and anions towards the positive plate.


Na ⁺	1/23.0 x (23 x 4.3)	4.3°
Be ²⁺	2/9.0 x (23 x 4.3)	22.0°
Ba ²⁺	2/137 x (23 x 4.3)	1.4°
S ²⁻	2/32.1 x (23 x 4.3)	6.2°
Br-	1/79.9 x (23 x 4.3)	1.2°

3 D

Construct a half-equation for the oxidation of methylbenzene:

 $C_6H_5CH_3 \textbf{+} 2H_2O \rightarrow C_6H_5COOH \textbf{+} 6H^+ \textbf{+} 6e^-$

Alternatively,

O.S. of *C before oxidation = 4 - 7 = -3O.S. of *C after oxidation = 4 - 1 = +3Change in O.S. = +3 - (-3) = +6 \therefore 6 electrons are removed during oxidation of methylbenzene to benzoic acid.

4 C

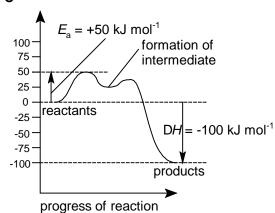
For options A and B, pV = nRT pV = (m/M)RT = constant ⇒ Graph of P against pV should be a vertical line at a particular value of pV.

For options **C** and **D**, $pV = nRT = (mR/M)T \Rightarrow pV \alpha T$ \Rightarrow Since the M_r of I is higher, the gradient of the line is gentler. 5 D

Heat absorbed by water = $\frac{300 \times c \times \Delta T}{1000}$ kJ mol⁻¹ Moles of propan-1-ol burnt = $\frac{m}{60.0}$ mol Heat released by burning *m* g of propan-1-ol = $\frac{m \times 2021}{60.0}$ kJ mol⁻¹ \therefore Efficiency of heating process $\frac{300 \times c \times \Delta T}{\frac{1000}{m \times 2021}} \times 100$ = $\frac{300 \times c \times \Delta T \times 60.0}{m \times 2021 \times 1000} \times 100\%$

Calcium and chlorine form $CaCl_2$ rather than CaCl because $DH_f(CaCl_2)$ is more exothermic than $DH_f(CaCl)$.

DH_f is the sum of enthalpy changes involved in a series of processes leading from the elements to the compounds:


- 1. Forming separate atoms from elements (DH_{at})
- Forming positive (from the metal atom) or negative (from the non-metal atom) ions. (Sum of I.E. or sum of E.A.)
- 3. Combining the ions together in an ionic lattice held together by the attraction between oppositely charged ions (LE).

For CaCl,

- less energy is required to ionise the Ca atom only once, to Ca⁺
- only one Cl atom needs to be formed from Cl₂ and converted into a Cl⁻ ion
- lattice energy released by forming a 1:1 lattice of singly charged ions is less exothermic than that for CaCl₂, which involves Ca²⁺ ions.

Option **C** is the best answer.

8 A

In 1.0 mol dm⁻³ sulfuric acid, $[H^+] = 2.0$ mol dm⁻³. To make the electrode a standard hydrogen electrode, either change the acid to a 1.0 mol dm⁻³ monoprotic acid (option **A**), or halve the concentration of sulfuric acid used.

9 B

Since forward reaction is exothermic, higher temperatures will favour the backward reaction. This increases [NH₃] and [O₂] and decreases [N₂] and [H₂O] at higher temperatures. Thus the two downward–sloping graphs apply to either N₂ or H₂O.

At a higher pressure, backward reaction is favoured, and $[N_2]$ and $[H_2O]$ decreases. Thus, z > y.

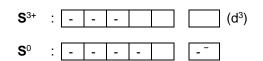
10 A

 $\begin{array}{l} \mathsf{H}_2\mathsf{O}(l) \ \acute{\mathsf{Y}} \ \mathsf{H}^+(\mathsf{aq}) + \mathsf{OH}^-(\mathsf{aq}) \\ \mathcal{K}_\mathsf{w} = [\mathsf{H}^+][\mathsf{OH}^-] \\ [\mathsf{H}^+] = \sqrt{\mathcal{K}_\mathsf{W}} \end{array}$

Α	Ρ	At 25 °C, $[H^+] = 1.0 \times 10^{-7} \text{ mol dm}^{-3}$ At 10 °C, $[H^+] = 0.5 \times 10^{-7} \text{ mol dm}^{-3}$ At 0 °C, $[H^+] = 0.3 \times 10^{-7} \text{ mol dm}^{-3}$
В	0	lonic dissociation of water increases by a factor of 3.3 between 0 °C and 25 °C.
С	0	Extent of hydrogen bonding cannot be deduced from the given information.
D	0	$[H^+] = [OH^-]$ at 0 °C, 10 °C and 25 °C. Thus water remains a neutral liquid at these temperatures. However pH of neutral water is no longer 7.0, but increases with decreasing temperature.

11 A

Rate law is determined by slow step in proposed mechanism, i.e. Rate = $k[O_3][O]$. This rate law cannot be compared directly with the experimental rate equation because it contains the concentration of an intermediate, O. Thus we need to express rate law in a way that removes the intermediate O.


From Step 1,
$$K = \frac{[O_2][O]}{[O_3]} \models [O] = \frac{K[O_3]}{[O_2]}$$

Assuming that Step 1 equilibrium is established quickly before O is reacted with O_3 in Step 2,

Rate =
$$k[O_3][O] = \frac{k'K[O_3]^2}{[O_2]} = \frac{k[O_3]^2}{[O_2]}$$

where $k = k'K$

$[S(C_2O_4)_2(NH_3)_2]^-$

Let the oxidation number of **S** be x. x + 2(-2) + 2(0) = -1 $\Rightarrow x = +3$

13 D

Α	(Wrong) NH ₃ acts as a weak base and
	a ligand in Reaction I.
В	(Wrong) G is Cu(OH) ₂ and H is
	[Cu(NH ₃) ₄] ²⁺
	Oxidation state of Cu remains at +2.
	\ It is not a redox reaction.
С	(Wrong) H is a deep blue solution
	containing [Cu(NH ₃) ₄ (H ₂ O) ₂]SO ₄ .
D	(Correct) When edta4- binds to the
	Cu ²⁺ during ligand exchange, 4 moles of
	NH ₃ and 2 moles of H ₂ O is released.
	\ The entropy of the system increases
	when reaction III occurs.

14 D

Z has a greater atomic radius than **W**

 \triangleright **Z** is earlier on in the period (**Z**...., **W**....) **W** has greater electrical conductivity than **Y** and **Y** has higher boiling point than **W** \triangleright **Y** is in Group **IV** and hence **W** is a metal (not Si)

15 B

First trace of precipitate appears when ionic product = K_{sp} .

ZnCO₃(s) Ý Zn²⁺(aq) + CO₃²⁻(aq)

$$K_{sp} = [Zn^{2+}][CO_3^{2-}] = 1.4 \text{ ' } 10^{-11}$$

 $\setminus [CO_3^{2-}]$ at which first trace of ZnCO₃ appears
 $= \frac{1.4 \text{ ' } 10^{-11}}{0.2} = 7 \text{ ' } 10^{-11} \text{ mol } dm^{-3}$

Ag₂CO₃(s) Y 2Ag²(aq) + CO₃²⁻(aq)

$$K_{sp} = [Ag^+]^2[CO_3^{2-}] = 8.1 \text{ ' } 10^{-12}$$

 $\setminus [CO_3^{2-}]$ at which first trace of Ag₂CO₃
appears = $\frac{8.1 \text{ ' } 10^{-12}}{0.1^2} = 8 \text{ ' } 10^{-10} \text{ mol dm}^{-3}$

Thus ZnCO₃ will precipitate first when $[CO_3^{2-}]$ reaches 7 \cdot 10⁻¹¹ mol dm⁻³. When $[CO_3^{2-}]$ reaches 8 \cdot 10⁻¹⁰ mol dm⁻³, Ag₂CO₃ will precipitate next.

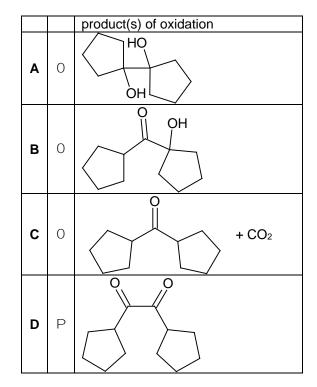
16 B

Α	(Wrong) Down the group, oxidising		
	power decreases.		
В	(Correct) Down the group, K _{sp} value		
	decreases.		
С	(Wrong) Down the group, lattice energy		
	of AgX becomes less exothermic due to		
	the increasing anionic radius of halides.		
D	(Wrong) Down the group, the hydration		
	energy decreases due to the increasing		
	anionic radius of halides.		

n	formula	distribution of Cl atoms		no. of	
		C1	C2	chloroethanes	
1	C_2H_5Cl	1	0	1	
2	$C_2H_4Cl_2$	2	0	2	
2	C2H4C <i>l</i> 2	1	1	Z	
3	C ₂ H ₃ C <i>l</i> ₃	3	0	2	
3	U 21 13 U 13	2	1	2	
4	$C_2H_2Cl_4$	3	1	2	
4	C2N2C14	2	2	2	
5	C ₂ HCl ₅	3	2	1	
6	C_2Cl_6	3	3	1	

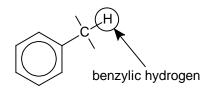
Total no. of different chloroethanes = 9

18 A

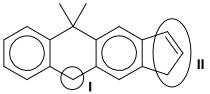

The stronger an acid, the lower the pK_a value. The following lists the four acids used in the options:

- w CH₃CO₂H
- $W CCl_3CO_2H$
- $\textbf{W} \quad C_2H_5OH$
- $W C_6H_5OH$

Increasing acid strength: $C_2H_5OH < C_6H_5OH < CH_3CO_2H < CCl_3CO_2H$


Decreasing pK_a value: C₂H₅OH > C₆H₅OH > CH₃CO₂H > CC*l*₃CO₂H

19 D



20 B

Alkyl side-chains on a benzene ring are susceptible to oxidative degradation if they possess at least one benzylic hydrogen atom.

Thus, side-chains on ${\bf Z}$ which can be oxidised are:

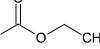
I : It is only possible to oxidise the carbon atom in -CH₂ to a lower oxidation state of +2 in -C=O, rather than +3 in -COOH.

There is only 1 C atom connecting both benzene rings. If I is oxidised to -COOH, one of the benzene rings has to be reduced by replacing the oxidised carbon with a hydrogen atom.

II : II may be regarded as 2 separate alkyl groups, with each being oxidised to –COOH.

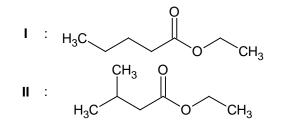
A	(Account is correct) Electrophilic substitution of phenol by bromine in aqueous medium yields a tri-substituted product, rather than a mono-substituted one.
В	(Account is correct) Ppt is 2,4,6- tribromophenol, which is white.
С	(Account is wrong) Resultant solution contains 2,4,6-tribromophenol, which is acidic.
D	(Account is correct) Resultant solution is yellow, due to the presence of excess dissolved bromine.

22 D

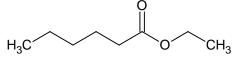

A	0	1 mol –COOH reacts with 1 mol PC l_5 , and 1 mol –OH group reacts with 1 mol PC l_5 . \ 1 mol citric acid reacts with 4 mol PC l_5 .
В	0	3 mol tribasic acid reacts with 1 mol Na ₂ CO ₃ . (Alcohols are neutral, and do not react with Na ₂ CO ₃ .) $1 \text{ mol citric acid reacts with } \frac{1}{3}$ mol Na ₂ CO ₃ .
С	0	1 mol –COOH reacts with 1 mol NaOH. (Alcohols are neutral, and do not react with NaOH.) \ 1 mol citric reacts with 3 mol NaOH.
D	Ρ	1 mol –COOH reacts with 1 mol Na, and 1 mol –OH group reacts with 1 mol Na. \ 1 mol citric acid reacts with 4 mol Na.

23 B

Nitrile groups on CS are hydrolysed to either salts of carboxylic acids (alkaline hydrolysis) or carboxylic acids (acid hydrolysis).

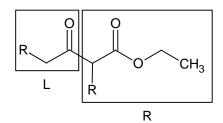

24 A

Product of Claisen condensation of ethyl esters must be an ethyl b-keto ester:



Þ Options **B** and **D** are not possible.

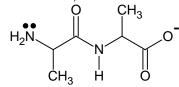
4th member of series has 2 isomers:



▷ Option **C** is not possible, since it is derived from an isomer of the 5th member:

Explanation for option A:

Option **A** is one of four possible products resulting from the condensation of two different esters, i.e. ethyl ethanoate and isomer **II**:


SOU		
segment L	segment R	
ethyl ethanoate	ethyl ethanoate	
ethyl ethanoate		
II	=	® A
II	ethyl ethanoate	

25 A

A substituent group (fluorine atom), and not a hydrogen, is substituted without disruption to the aromaticity of the benzene ring. This is therefore not an electrophilic substitution reaction.

F is highly electronegative. The C atom to which F atom is attached is d+, and can attract a nucleophile.

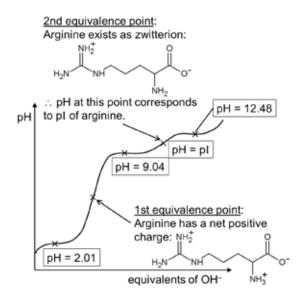
This reaction is therefore a nucleophilic substitution reaction, with

being the nucleophile, and F atom being the leaving group.

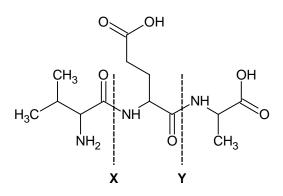
Mechanism **C** involves the electrophilic addition of Br_2 to methylbenzene. This destroys the aromaticity of the benzene ring and is energetically not favourable.

27 B

In arginine, pK_a of side-chain =NH₂⁺ group is higher than pK_a of a–NH₃⁺ group. Thus a–NH₃⁺ group will be de-protonated first before zwitterion is formed.


28 C

Since an acidic solution of arginine is used, there are three groups, i.e. a-COOH, a- NH_2 , and protonated basic side group, to be neutralised.


\ This reaction may be regarded as a triprotic acid whose neutralisation takes place in three stages. This eliminates pH titration graphs for diprotic acids (options **A** and **B**).

a-COOH is neutralised first, followed by a-NH_3^+, and finally the protonated basic side group.

At half-equivalence point for each neutralisation stage, $pH = pK_a$ of each respective acidic group.

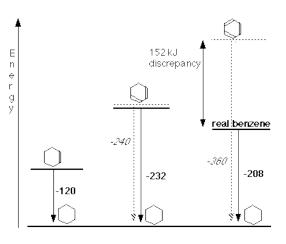
Hydrolysis of this tripeptide will break the amide linkage at X and / or Y.

30 A

Amino acid residue at N terminus: alanine (Ala) Amino acid residue at C terminus: valine (Val) Thus **P** is (N) Ala-Pro-Lys-Leu-Ileu-Val (C).

Section B

31 A


1	Ρ	Over time, the amalgam filling is oxidised by dissolved oxygen in the saliva. $(\vec{E}^{\Phi})_{cell} = \vec{E}^{\Phi} (O_2/H_2O) - \vec{E}^{\Phi} (Sn_8Hg/Sn^{2+}) = +1.23 - (-0.13) = +1.36 V > 0$ An acidic medium results in $\vec{E}^{\Phi} (O_2/H_2O)$ and $(\vec{E}^{\Phi})_{cell}$ becoming more positive. Corrosion becomes thermodynamically more feasible.
2	Ρ	Contact between aluminum foil and amalgam filling short-circuits the cell in Statement 1 . A <i>l</i> reduces Sn ²⁺ to Sn, and amalgam becomes the cathode.
3	P	$E^{-\Phi}$ (Sn ₈ Hg/Sn ²⁺) is more negative than $E^{-\Phi}$ (Au ³⁺ /Au). When Au is in contact with the amalgam, a galvanic cell is set up with the amalgam filling as the anode and gold inlay as the cathode. Tin in the amalgam is oxidised to Sn ²⁺ and releases electrons to the gold cathode where oxygen is reduced preferentially. $[E^{-\Phi}$ (O ₂ /H ₂ O) is less positive than $E^{-\Phi}$ (Au ³⁺ /Au). Thus O ₂ is reduced.]

32 D

 $2N_2(g) + 3H_2(g) \acute{Y} 2NH_3(g) \quad DH = -ve$

4	D	
1	Р	DG = DH –TDS
		$DS < 0 \Rightarrow -TDS$ is always positive.
		DG < 0 only if D <i>H</i> > TDS
		At high temperatures, DH < TDS
		and DG > 0.
		\ Reaction becomes less feasible
		as temperature increases.
2	0	At higher pressures, by LCP,
		equilibrium position lies more to the
		right to favour the side of the
		reaction with fewer gas molecules,
		i.e. formation of NH ₃ .
		Yield of NH ₃ increases.
		Higher pressures increase rate of
		reaction between gaseous
		reactants.
3	0	Presence of a catalyst does not
5	0	
		affect yield.
		However a catalyst increases both
		the forward and backward reaction.

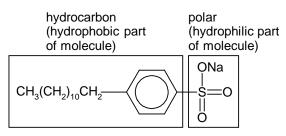
33 A

34 B

5	
Р	No. of lone pairs around S atom = 3
Ρ	SH ⁻ accepts an H ⁺ ion to become
	its conjugate acid, H₂S.
	no conjugato acia, nzer
	••
	H×●S●×H
	●●
	No. of electrons from S atom = 16
	No. of electrons from H atoms = 2
	Charge = 0
	\ Total no. of electrons on H ₂ S
	= 16 + 2 = 18
0	O.S. of $S = 6 - 8 = -2$
	P

35 B

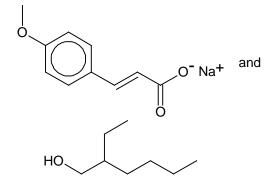
1	Ρ	Protoporphyrin molecule is a chelate. Each N atom / ion shares a lone pair with central Zn ²⁺ ion to form a dative bond.
2	Ρ	Each Zn–N bond is a s-bond.
3	0	Structure of ligand before bonding:
		$\begin{array}{c} \overset{O^{T}}{\underset{O}{\longrightarrow}} & \overset{CH_{3}}{\underset{H_{3}}{\longrightarrow}} & \overset{CH_{2}}{\underset{H_{3}}{\longrightarrow}} & \overset{CH_{2}}{\underset{CH_{3}}{\longrightarrow}} & \overset{CH_{3}}{\underset{CH_{3}}{\longrightarrow}} & \overset{CH_{3}}{\underset{CH_{3}}$


36 C

1	\cap	Oxidation number of chlorine
	0	
		changes from 0 in Cl_2 to -1 in Cl^-
		and to +5 in C/O_3^- .
2	Ρ	6OH⁻(aq) + 3X₂(aq) ® 5 X⁻(aq) + XO₃⁻(aq) + 3 H₂O(<i>l</i>)
		2 r mol of KOH was required and $\frac{5}{3}$ r mol of KC <i>l</i> was produced.
3	Ρ	A disproportionation reaction
		occurred. However, the final
		products obtained included <u>chloride</u>
		and potassium chlorate (V).

37 C

1	0	The pH of the solution from the
		reaction of the metal oxides with
		water increases down the group.
2	Ρ	The reactivity of the elements with
		water increases down the group.
3	Ρ	The decomposition temperature of
		the carbonates increases down the
		group due to the decrease in the
		polarising effect on the carbonate
		ion.


38 A

1	Ρ	Ionic portion of SDBS is attracted to
		polar solvents like water -
		hydrophilic
2	Ρ	Hydrocarbon portion of SDBS is
		soluble in organic solvents -
		hydrophobic
3	Ρ	There are 4 bond pairs and 0 lone
		pair around S atom.

39 D

The ester is hydrolysed by NaOH(aq) to form the following products:

40 B

1	Ρ	Bromoethane is more volatile than
2	Ρ	ethanol, and propanal is more volatile than propanol. Thus both products will distil over as they are being produced while the other substances remain in the flask.
3	0	Propene is a gas at r.t.p.