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2024 RI H3 Physics Prelims Solutions & Mark Scheme 
  

1 (a) (i) By the conservation of linear momentum 
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Since the collision is elastic 
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   When 
Bm  reduces to zero, 
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  (ii) 
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  (iii) 1. Fraction of kinetic energy of A transferred to B: 
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Fraction of kinetic energy of B transferred to C: 
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   2. 

For the largest F, 0
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1. (b) (i) 
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  (ii) 1. In the laboratory frame, in the vertical direction, momentum must be zero 

after the collision. Hence, 
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sin sin
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   2. For momentum to remain zero in the centre-of-mass frame, the two 

spheres must be moving in opposite directions in that frame, with the 

same speed 1 2

2

u u+
 as before. 

 

And since ' CMv v v= −  and therefore ' CMv v v= + , by drawing a vector 

diagram, the velocities of the two spheres in the centre of mass frame 
must be in the vertical direction. 
 
Hence, since the vectors form a right-angled triangle, 
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( )

( ) ( )

1 2

1 2

1 2 1 2

1 2

1 2

1 2 1 2

1 2

1

2

1

2

2tan

2

60

tan60 3

3

3 1 3 1

3 1

3 1

1
 where 3

1

u u
u u

u u u u

u u

u u

u u u u

u u

u

u

u

u










+

+
= =

− −

= 

+
 = =

−

+ = −

− = +

+
=

−

+
 = =

−

 

B1 
 
 
 
 
 
 
 
 
 
 
 
 
 
B1 

 
2 (a) Draw and label the normal contact forces NA and NB, and the frictional forces fA and 

fB correctly.  
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 (b) Since the hoop is in equilibrium, taking moments about its centre O, 

0

A Bf R f R

 =
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A Bf f =  

 
 
 
B1 
A0 

 (c) Let Nrod,A and Frod,A be the normal contact force and frictional force of the hoop on 
the stick. 
Let Nrod,C and Frod,C be the normal contact force and frictional force of the ground on 
the stick.  
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  By Newton’s third law, , , and  A rod A A rod AN N f f= = . 

 
For the stick, taking moments about C, 
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 (d) Resolving horizontally for forces on the hoop, 

cos sinA B Af f N + =  
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3 (a) Since the ring is smooth, the tensions in the left (of ring) and right (of ring) sections 

of the string are the same. 
 
Resolving forces horizontally, 

                      
2

0 0sin73 sin51
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Resolving forces vertically, 
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 (b) 2 2
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1.91 m s

250
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−= = =  
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 (c) Although the speed of the car is constant, its velocity is not as its direction is 

constantly changing. Hence the car is accelerating and there is a resultant force 
acting on it. 
 
The resultant force is directed towards the centre of the circle, hence it is always 
perpendicular to the velocity of the car. 
As a result, no work is done by this force and hence there is no change in the kinetic 
energy of the car. 
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4 (a) When the platform is at displacement y from the equilibrium position, resultant force 

on the platform is 
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Since 1 22k k

m

+
 is constant, acceleration a y − . 

This satisfies the definition for simple harmonic motion where the angular frequency 

1 22k k

m


+
= .  

Hence the platform and the ball oscillate in simple harmonic motion. 
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 (b) (i) 

 
 
 
 
 
 
 
 
 
 
 
 

At the equilibrium position of the three-springs system, extension of each 
spring is e. 

1 2

1 2

2

2
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After bottom spring breaks, at the equilibrium position of the two-springs 
system, extension of each spring above the platform is e’. 
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The amplitude of oscillation of the two-springs system in SHM, 
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0'y = distance from top support where spring breaks – distance from top 

support to equilibrium of two-springs system 
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  (ii) Maximum speed of the platform is at the equilibrium position.  
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  (iii) ( )
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Ball will lose contact with the platform if 
  

max

0
1

1 2 1

1 01 1

1 2 1

1 01

1 2

1 01

1 2

1 1
2

2 2

22 2
1

2 2

22
2

2

1     (shown)
2

a g

y
k g g

k k k mg

k yk k

k k k mg

k yk

k k mg

k yk

k k mg



 
− +  

− 

− + 
−

+ 
−

+ 
−

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
M1 
 
 
 
 
 
 
 
A0 

      

 

 

 



7 

 

 
5 (a)  

 
 
 
 
 
 
 
 
 
 
 
The radius of the cone decreases linearly with the length of the conductor. 
 
Consider a section of the cone of radius y, and thickness dx, located a distance x 
from the left end of the cone as shown in the diagram above. 
 
The radius y can be expressed as 
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The resistance across opposite sides of this small section is 
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Therefore, the total resistance across the truncated cone is 
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 (b)  
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6 (a) To accelerate the particles, adjacent tubes must have opposite polarities. Their 

polarity must change continuously at a constant frequency to synchronize with the 
movement of particles from one tube to the next. 
 
This means that the period T of the alternating voltage supply must be constant, and 
equal to twice the time interval that the particle takes to travel through each tube.  
 
Since the velocity of the particle increases as it is being accelerated from one tube 
to the next, the tube length must increase proportionately to the increase in velocity 
of the particle, so as to keep the traverse time through each tube the same.  
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 (b) By energy conservation, 
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2 2 7 2 6 2
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1

1
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= 




= 



 
= 

 

=

=

=

 

 
Hence the particle is a proton. 
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 (c) Since the charged particles have the same charge, they will repel one another, and 

they will deviate from the (original straight line) direction of the beam.  
Therefore, they need to be focussed back into the original (or intended) direction of 
the beam. 

 
B1 

 

 
7 (a) Conservation of momentum: 

mv  = h /  

v = h / m 
 
where h is the Planck constant. 
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 (b) 

 

2
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


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=

=

=

  

 
For K / E to be << 1, need large mass and long wavelength.  
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 (b) E = hc /   

 
34 8

7
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−
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
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since K / E << 1, recoil of atom may be ignored.  
 

 
 
 
 
 
 
M1 
 
 
 
A1 
 
 
B1 

 



10 

 

8 (a) 

2

2 2 2

2 2 2

eff

2

eff

2
2

2 2

2 2

eff 2 2 2

Since  KE GPE

1

2

But  

1 1 1

2 2 2

1

2
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2 2

r t

r t r

t
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t t

E
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E mv

r

v v v
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r

GMm
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r rm r m r
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=

 =  =

 
 = − = − 

 
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 (b) At an apse, the velocity is perpendicular to the radius vector r, hence vr = 0.  

 = effE U  

 
B1 

    
 (c) 

2 2

eff 2 2

2 2 2

2 2 2 2

2

Both total energy  and angular momentum  are constant.

At the apses,

2 2

1 1 1 1

22 2

1 1 1 1

2

p ap a

p a p ap a p a

p a p

E L

GMm L GMm L
E U

r rmr mr

L L GMm GMm L
GMm

r r m r rmr mr r r

L

m r r r r

= = − + = − +

   
 − = −  − = −   

  
  

 
 − + 

 
 

( )

( ) ( )

( )

2

2

2 2

1 1

2 1 1

The total energy   
2

1

2

p a

a p a a p

p a

p a

p pp a p p

pa

p pa p a p

a p

GMmr rL GMm
GMm

r r m r r

r r

GMmr rGMm L GMm
E

r rmr r r r

rrGMm GMm

r rr r r r

GMm

r r
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a

   
= −  = =   

    +     +  
 

 = − + = − +
+

   
   = − − = −
   + +
   

= −
+

= −
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9 (a) (i) Mass of plate 

              1
2

m bh=   

 
B1 

  (ii) Method 1 

 
 

Clearly annotated diagram. 
 
Consider a horizontal strip of length x and height dy. 
 
By geometry, 
 

 
x h y

b h

−
=  

 ( )
b

x h y
h

=  −  

 
Mass of strip 
 

 ( )
b

dm xdy h y dy
h

 = =   −  

 
Centre of mass  
 

 ( ) 2

CM 210 0 0
2

1 1 2h h hb
y ydm y h y dy hy y dy

m bh h h
= =   − = −  


 

 
3

2 3

2C

0

M 2

2 1 1 2

2 3 6 3

h

y
h h

hy y
h h

 
= − =  = 

 
 

 
*Alternative methods such as considering strips in the vertical direction are 
acceptable. 
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  (iii) 1.  
 

 
 

 
 
 
 
 
 
 
 
 
 
 

x

y

x

y

O
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Moment of inertia of strip about its CM is 
 

 
2

C

1

12
d dm x= I  

 
Using parallel axis theorem, moment of inertia of strip about the axis 
perpendicular to the page and passing through the mid-point of its base 
is. 

 
2 21

12
d dm x dm y=  + I  

 ( ) ( ) ( )
2

2 2

2

1

12

b b b
h y dy h y h y dy y

h hh
dI  =    −   − +   −   

 ( ) ( )
3

3 2

312

b b
h y dy h y y dyd

h
I

h

 
=  − +  −  

 ( ) ( )
3

3 2 2 3 2 3

3
3 3

12

b b
h h y hy y dy hy y dydI

hh

 
=  − + − +  −  

 
Integrating from 0 to h, 
 

 ( ) ( )
3

3 2 2 3 2 3

3 0 0
3 3

12

h hb b
h h y hy y dy hy y dy

hh
= − + − + − 
 

I  

 
3

3 2 2 3 4 3 4

3

0 0

3 1 1 1

2 4 3 412

h h

I
b b

h y h y hy y hy y
hh

    
= − + − + −   

   
 

 
3

4 4 4 4 4 4

3

3 1 1 1

2 4 3 412
I

b b
h h h h h h

hh

    
= − + − + −   

   
 

 
3

4 4

3

1 1

4 1212
I h

b b
h

hh

    
= +   

   
 

 ( )
3 3

2 21
4

48 12 24
I

b h bh
m b h= + =  +

 
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   2. Using parallel axis theorem, 

 

2

CM
3

h
m
 

= +  
 

I I  

 ( ) ( )
2

2 2 2 2 2

CM

1 1 1
4 3 4

3 24 9 72

h
m m b h mh m b h
 

= − =  + − =  + 
 

I I  

 
*Alternative methods such as considering moment of inertia about x- and 
y-axes and perpendicular axis theorem are acceptable. 
 

 
 
M1 
 
 
A1 
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 (b) (i) 

 
 

 
 
 
B1 

  (ii) Moment of inertia of rod about A (axis through table edge) 
 

 
2

2 21 7

12 4 48

L
I m m mL L

 
= + = 

 
 

 
 
 
B1 

  (iii) After rotating by an angle , and applying the principle of conservation of 
energy, 
 

 loss in G.P.E. gain in rotational K.E.=  

 21
2

sin 0
4

L
mg I   = −  

 
24 sin

7

g

L


 =  

 
 

 
 
 
 
 
 
 
B1 

  (iv) The angular acceleration  of the rod is given by 
 

 27
cos

4 48

L
mg mL   =  

 12
cos

7

g

L
 =    

 
 
 
 
 
B1 

  (v) The required centripetal force 2mr  is provided by the friction minus the 

component of the weight along the length of the rod. 
 

 2sin
4

L
N mg m  − =      

( r = L / 4) 
 

 
 
 
 
B1 

  (v) 1. Resolving forces parallel to the rod, 
 
 

net sinF N mg= −     
 

 
 
B1 

   2. Fnet is the required centripetal force 2mr   

 2

net
4

L
F m=      

( r = L / 4) 
 

 
 
B1 

      

mg

f

N
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  (vi) Considering forces perpendicular to the rod, 
 
 cosmg N ma − =     
 

 
 
B1 

  (vii) Since the rod has yet to slip at A,  
 

 
4

L
a =   

 
From : 
 

 cos
4

L
mg N m − =    

 12 4
cos cos cos cos

4 4 7 7

L L g
N mg m mg m mg

L
    = −   = −     =  

 
Substituting N into , 
 

 4 24 sin
cos sin

7 4 7

L g
mg mg m

L


   − =    

 4 6
cos sin sin

7 7
   − =  

 4 13
cos sin

7 7
  =  

 4
tan

13
 =  

 
 
 
B1 
 
 
 
 
 
 
B1 
 
 
 
 
 
M1 
 
 
 
 
 
 
A1 

 

 
10 (a) (i) Consider a cylindrical Gaussian 

surface of radius r  and length L that is 
co-axial with the wire as shown.  

Charge enclosed, enQ L=  

By Gauss’s Law,  

 

 en

o

Q
d


=  E A  

 

For the two flat surfaces, E is perpendicular to dA. Hence, 0d =E A  

For the curved surface, E is parallel to dA. Hence,  

( )

( )

               since  is constant over the curved surface

2

d EdA

E dA E

E rL

 =

=

=

 



E A

 

 
 
 
 
 
 
 
B1 
 
 
 
B1 

B1 

 

B1 

+
+

E

Gaussian

surface

L

© C.L. Wong

+
+
+
+
+
+
+
+

r

+
+
+
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Hence, 

  

( )
0

0

0

0 2

2

2

enQ
E rL

L
E rL

E
r













= +

= 

=

 

 

 

 

A1 

     
  (ii) 1. 

( )2 2o o

E
r d r

 

 
= +

−
 

A1 

   2. 

( )

4

3 4

4

3 4

2 2

ln
2

4 3 4
ln ln

2 3 4 4

ln9
2

d

d
o o

d

o d

o

o

V dr
r d r

r

d r

d d

d d

 

 













 
= − + 

−  

  
= −   

−  

    
= − −    

    

=



 

Correct sign  - [B1] 

 
B1 
 
 
B1 
 
 
 
 
A1 

 
10 (b) (i) induced e.m.f. is equal / directly proportional to rate B1 
   of change of / cutting (magnetic) flux / flux linkage B1 
     
  (ii) 1. 

( )

( ) ( )5 2

3

where  is the angle between normal 
cos    

to Earth's surface and magnetic field

sin    90

4.7 10 8.0 sin50

7.2 10  Wb

BA

BA




  

−

−

 
 =  

 

= + = 

=  

= 

 

 
 
 
M1 
 
 
A1 

   2. 

( ) ( ) ( )37.2 10 200    200 revolutions per second

1.4 V

d

dt


 −


= −

= 

=

 

 
 
M1 
 
A1 

   3. correct reasoning, making appropriate use of Fleming’s Left-Hand Rule, 
to conclude that the force acting on a positively charged particle is 
towards the outer end of the blade 
outer end is at the higher potential 

M1 
 
 
A1 

      
   4. both rotor blades have the same e.m.f. induced across them OR both 

rotor blades have the same end at the higher potential 
potential difference between the two ends is zero 

M1 
 
A1 
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11 (a) (i) 

( )( )3 6

4

1
From 

2 1

2

2 10 10 10 10

6 28 10  s

LC

T LC

T LC







 − −

−

=

=

=

=  

= 

,

.

.

 

 
 
 
 
 
 
 
 
A1 

     
  (ii) 

( )( )

0

6

5

From 

10 10 50

50 10  C

Q
C

V

Q CV

−

−

=

=

= 

= 

,

.

.

 

 
 
 
 
M1 
A1 

     
  (iii) 

( )( )
( )

2
2 0

2
6

26

6

3 3

1 1

2 2

50 101 1
10 10 50

2 2 10 10

1 25 10  J 1 25 10  J

.
.

. .

C C

Q
U CV U

C

−

−

−

− −

= =


=  =



=  = 

 

 
 
 
 
 
A1 

 (b)  

 

      
 

 

  UC starts from max and shape proportional to cos2t, and correctly labelled as UC. 

UL starts from 0 and shape proportional to sin2t, and correctly labelled as UL. 
Both graphs show 2 cycles in 1 period, the same min / max values and values on 
the axes. 

B1 
B1 
B1 

   
 
 
 
 
 
 
 
 

 

UC = UT cos2t  
 
 
 

UL = UT sin2t 

UT = UC + UL 

= 1.25  10−3 J  

= 6.28  10−4 s  
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 (c) (i) When the capacitor is fully discharged, all the energy is stored in the inductor. 
The maximum energy stored in inductor is equal to the maximum energy 
stored in the capacitor. Hence, 

( )( )
( )

( )
( )

2
2 2 20

0 0

2 2
0

0 0

0

66

33 6

1 1 1 1

2 2 2 2

10 1050 10
50

10 1010 10 10 10

050 A 050 A

.

.

. .

Q
LI LI CV

C

Q CV
I I

LC L

Q C
V

LLC

−−

−− −

= =

= =

= =


= =

 

= =

 

 

Alternatively, maximum current I0 can be found by applying  

 

             

0 0 0 0

0 0 0

6

3 6

just like  in shm

1

1
50 10 050 A

10 10 10 10

I Q v x

I Q Q
LC

−

− −

= =

 = =

=   =
  

 



.
.

 

 

 
 
 
 
 
 
 
 
 
 
 
 
M1 
 
 
A1 
 
 
 
 
 
M1 
 
 
 
A1 

     
  (ii) Maximum current occurs when the capacitor is fully discharged at time              

t = T/4. See Fig. 11.2. 
 

Hence, time = (6.2310-4) / 4 = 1.5710-4 s. 

 
 
 
B1 

     
  (iii) When the capacitor is fully discharged, the current in the circuit is a maximum 

and it continues to flow to charge the capacitor.  
 
As the current through the inductor decreases, the magnetic flux density 
around the inductor also decreases.  
 
By the laws of electromagnetic induction, the decrease in magnetic flux 
linkage of the inductor causes an e.m.f. to be induced in the inductor in a 
direction to prevent the current from decreasing.  
 
Hence a current continues to flow in the circuit until the capacitor becomes 
fully charged again and the current drops to zero.  
 
 
 
 
 

 
 
 
B1 
 
 
 
B1 
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 (d) That same amount of energy stored in both the capacitor and the inductor is half 
of the initial energy stored in the capacitor. 
 

 
( )

2 2
0 01 1 1

2 2 2

Q cos t Q

C C

 
=  

 


 

1

2

3 5 7

4 4 4 4

cos t

t , , ,

= 

=



   


 

 

5 4 4 4

3 5 7

8 8 8 8

7 79 10 2 34 10 3 89 10 5 45 10 s

T T T T
t , , ,

. , . , . , .− − − −

 =

=    

 

 
Alternative method: 
 

       

2
2

2
2 2 2 2 2 20

0 0 0

2

2
0

5 4 4 4

When  

1 1

2 2

1 1 1
cos sin sin

2 2 2

1 1
tan 1

tan 1

3 5 7

4 4 4 4

3 5 7

8 8 8 8

7 79 10 2 34 10 3 89 10 5 45 10 s

C LU U

Q
LI

C

Q
t LI t L Q t

C

t
LC

t

t , , ,

T T T T
t , , ,

. , . , . , .

   






   


− − − −

=

=

= =

 =  =

 = 

 =

 =

=    

 

 
Deduct 1m, if only 2 times were listed due to ecf from graph or otherwise. 

 
 
 
 
M1 
 
 
 
 
 
 
M1 
 
 
 
 
A1 
 
 
 
 
 
 
M1 
 
 
 
 
M1 
 
 
 
 
 
 
A1 

    
 (e) (i) A new resonant frequency is produced when the new capacitor is connected 

in series (CS = ½C) or in parallel (CP = 2C) to the original capacitor.  
 

( )

2
Hence, ratio

2

2
4 2 accept ratio 0 5

1

2

PS P

P SS

LCf C

f CLC

C
.

C

= = =

= = = =





 

 
 
 

 
 
 
 
M1 
 
 
 
A1 
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  (ii) With R = 200  in the circuit, the new angular frequency is  
 

( ) ( ) ( )

2

2

2

23 6 3

1

4

1 200

10 10 1 0 10 4 10 10

0

R

LC L

.



− − −

= −

= −
  

=

 

 

Since  = 0, the circuit is critically-damped. 
 
Hence, sketch Q decreasing to 0 over a short duration of time t without 
undergoing any oscillation. 
 

Show or state  = 0 [B1], state critical damping [B1], sketch Q decay to 0 
without undergoing oscillation [B1]. 

 
 
 
 
 
 
 
 
 
B1 
 
B1 
 
B1 

 


