Cano	lidate In	idex Nu	mber

Anglo - Chinese School (Independent)

FINAL EXAMINATIONS 2016 YEAR 3 INTEGRATED PROGRAMME CORE MATHEMATICS PAPER 1

WEDNESDAY

5th OCTOBER 2016

1 h 30 min

Additional Material
Graph Paper (1 sheet)

INSTRUCTIONS TO CANDIDATES

- Write your index number in the boxes above.
- Do not open this examination paper until instructed to do so.
- You are not permitted access to any calculator for this paper.
- Answer all questions in the spaces provided.
- Unless otherwise stated in the question, all numerical answers must be given exactly or correct to three significant figures.
- The maximum mark for this paper is 80.

	For E	Exan	nine	r's U	se
<u> </u>					

This paper consists of 13 printed pages.

[Turn over

Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are therefore advised to show all working.

Answer all the questions in the spaces provided.

1 [Maximum mark: 8]

(a) Simplify
$$\frac{a-b}{ab} - \frac{c-b}{bc} + \frac{c-a}{ac}$$
.

[2 marks]

(b) Simplify $\frac{x^3y^3 \times \sqrt[3]{x}}{\sqrt{x^2y^4}}$, giving your answer in the from x^ny^m , where n and m are rational numbers.

[3 marks]

(c) Factorise completely $(x+y)^2 - (x+y) - 6$.

[3 marks]

.....

$$\frac{c(a-b)-a(c-b)+b(c-a)}{abc}$$

$$=\frac{ca-cb-ac+ab+bc-ba}{abc}$$

$$=0$$

$$\frac{x^{3\frac{1}{3}y^3}}{xy^2}$$

$$= x^{\frac{7}{3}}y$$

$$(x+y-3)(x+y+2)$$

2 [Maximum mark: 8]

Mrs. Lim imported some olive oil for \$500. She paid x for each liter of the olive oil.

(a) Find, in terms of x, an expression for the amount of olive oil she bought.

[1 mark]

During transportation, 30 liters of olive oil was spilled. She sold the remaining olive oil for \$1 more per liter than what she paid initially.

(b) Write down an expression, in terms of x, for the sum of money she received.

[2 marks]

Mrs. Lim made a loss of \$25.

(c) Write down an equation in x to represent this information, and show that it can be reduced to $6x^2 + x - 100 = 0$.

[2 marks]

(d) Solve the equation $6x^2 + x - 100 = 0$, and hence, find the amount of olive oil she bought.

[2 marks]

(a)

Amount =
$$\frac{500}{r}$$

(b)

Amount left =
$$\frac{500}{x}$$
 – 30

Amount received =
$$\left(\frac{500}{x} - 30\right)(x+1)$$

(c)

$$500 - \left(\frac{500}{x} - 30\right)(x+1) = 25$$

$$500 - 500 - \frac{500}{x} + 30x + 30 = 25$$

$$-500 + 30x^2 + 5x = 0$$

$$6x^2 + x - 100 = 0$$

(d)

$$(6x + 25)(x - 4) = 0$$

$$x = 4$$

Amount =
$$\frac{500}{4}$$
 = 125

3 [Maximum mark: 8]

(a) Given that $-a \ln b$ is a solution to $25 - 2e^{-x} = 9$, find the value of a and of b, where a and b are integers.

[4 marks]

(b) Solve $\log_2(x+1) = \log_4(13-2x)$

[4 marks]

$$25 - 2e^{-x} = 9$$

$$16 = 2e^{-x}$$

$$16e^{x} = 2$$

$$e^{x} = \frac{1}{8}$$

$$x = \ln \frac{1}{8}$$

$$x = -3 \ln 2$$

$$\log_2(x+1) = \log_4(13-2x)$$

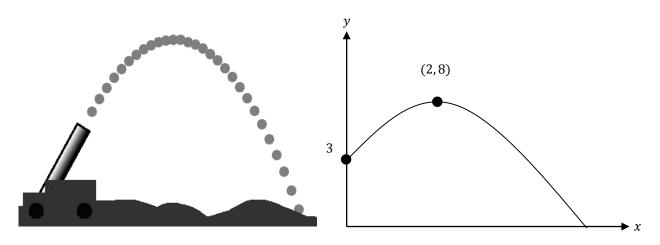
$$\log_2(x+1) = \frac{\log_2(13-2x)}{\log_2 4}$$

$$\log_2(x+1) = \frac{\log_2(13-2x)}{2}$$

$$2\log_2(x+1) = \log_2(13-2x)$$

$$\log_2(x+1)^2 = \log_2(13-2x)$$

$$(x+1)^2 = 13-2x$$


$$x^2 + 4x - 12 = 0$$

$$(x+6)(x-2) = 0$$

$$x = -6 \text{ (NA)} \qquad \text{or} \qquad x = 2$$

4 [Maximum mark: 5]

A cannonball was fired and is modelled by a quadratic graph as shown in the diagram below. The cannonball was fired from a height of 3 m. The trajectory of the cannonball reached a maximum point at (2, 8).

(a) Express the equation of the trajectory in the form $y = a(x-h)^2 + k$, where a, h and k are constants.

[3 marks]

(b) Find the range of values of x for which $a(x-h)^2 + k > 3$.

[2 marks]

.....

$$y = a(x-2)^2 + 8$$

$$3 = 4a + 8$$

$$4a = -5$$

$$a = -\frac{5}{4}$$

Using symmetry property of quadratic curve,

5 [Maximum mark: 5]

Given that $5 \le a \le 10$ and $-6 \le b \le -1$, where a and b are integers. Find

(a) the largest possible value of a-b.

[1 mark]

(b) the smallest possible value of $b^2 - a$.

[1 mark]

(c) the smallest possible value of $\frac{-a^2 + 12a - 31}{b}$.

[3 marks]

$$10 - (-6)$$

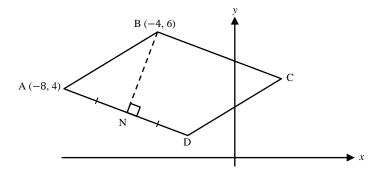
$$(-1)^2 - 10$$

$$| = -9$$

(c)

$$\frac{-a^2+12a-31}{b}$$

 $\begin{vmatrix} \cdot \end{vmatrix} = \frac{5}{-1}$


$$| = -5$$

.....

.....

6 [Maximum mark: 12]

The diagram shows a parallelogram ABCD where the coordinates of A and B are (-8, 4) and (-4, 6) respectively. The equation of AD is 3y + x - 4 = 0. N is the foot of the perpendicular from B to AD, and AN = ND.

(a) Find the equation of *BN*.

[3 marks]

(b) Find the coordinates of *N*.

[3 marks]

(c) State the coordinates of C and D.

[3 marks]

(d) Calculate the area of the parallelogram ABCD.

[3 marks]

$$3y + x - 4 = 0$$

$$y = -\frac{1}{3}x + \frac{4}{3}$$

$$m_{BN} = 3$$

$$y - 6 = 3(x + 4)$$

$$y = 3x + 18$$

 $\begin{array}{c|c}
D(-2,2) \\
C(2,4)
\end{array}$

$$BN = \sqrt{(6-3)^2 + (-4+5)^2} = \sqrt{10}$$

$$AD = \sqrt{(4-2)^2 + (-8+2)^2} = \sqrt{40}$$

$$Area = \sqrt{10}\sqrt{40} = 20$$

 •
 •
 •
 •

7 [Maximum mark: 6]

Solve the simultaneous equations

$$2^{2+m} + 3(3^n) = 5$$

$$2^m + 3^{n+1} = 2$$

٠.	$4(2^m) + 3(3^n)$	=	5
			_

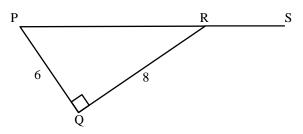
$$3(2^m) = 3$$

$$|\cdot| 2^m = 1$$

$$|m| = 0$$

$$1 + 3(3^n) = 2$$

$$| \cdot | 3^n = 3^{-1}$$


"
$$n = -1$$

.....

.....

8 [Maximum mark: 8]

(a) In the diagram below, PRS is a straight line and $\angle PQR = 90^{\circ}$. Find the value of

(i) $\tan \angle QRP$

[1 mark]

(ii) $\cos \angle QRS$

[2 marks]

(b) Given that θ is obtuse and that $\sin \theta = \frac{2}{3}$, find the value of $\frac{\tan \theta}{1 - \cos \theta}$. Leave your answer in the from $a\sqrt{b} + c$, where a, b and c are constants.

[5 marks]

$$\tan QRP = \frac{6}{8}$$

$$PR^2 = 6^2 + 8^2$$
$$PR = 10$$

$$\cos QRP = \frac{8}{10}$$

$$\cos QRS = -\frac{4}{5}$$

$$\tan \theta = -\frac{2}{\sqrt{5}} \qquad \qquad \cos \theta = -\frac{\sqrt{5}}{3}$$

$$\frac{-\frac{2}{\sqrt{5}}}{1+\frac{\sqrt{5}}{3}} = \frac{-\frac{2}{\sqrt{5}}}{\frac{3+\sqrt{5}}{3}} = -\frac{2}{\sqrt{5}} \times \frac{3}{3+\sqrt{5}} = \frac{-6}{3\sqrt{5}+5}$$

$$=\frac{-6}{3\sqrt{5}+5}\times\frac{3\sqrt{5}-5}{3\sqrt{5}-5}$$

$$= \frac{3}{2} - \frac{9}{10}\sqrt{5}$$

- 9 [Maximum mark: 6]
 - (a) It is given that the graph of $y = -x^2 + (k+2)x + (k-1)$ touches the x axis at only one point. Find the possible values of k.

[3 marks]

(b) Given that $\frac{3}{x^2 + 5x - 14} < 0$, find the range of values of x.

[3 marks]

$$b^2 - 4ac = 0$$

$$(k+2)^{2} - 4(-1)(k-1) = 0$$

$$k^{2} + 4k + 4 + 4k - 4 = 0$$

$$k^{2} + 8k = 0$$

$$k^2 + 4k + 4 + 4k - 4 = 0$$

$$k^2 + 8k = 0$$

$$k = 0$$
 or $k = -8$

$$|x^2 + 5x - 14| < 0$$

$$x^{2} + 5x - 14 < 0$$
...
$$(x + 7)(x - 2) < 0$$
...
$$-7 < x < 2$$

$$-7 < x < 2$$

• • •	 	• •	٠.	٠	٠.	•	 •	٠	٠.	•	•	٠.	•	•	٠.	•	٠.	•	٠.	 •	• •	 •	•	 •	•	• •	•	•	٠.	 •	 ٠	•	• •	٠	٠.	•	•	٠.	•	٠.	•	٠.	٠	٠.	٠	٠.	٠	٠.	•	٠.	•	٠.	•	•	٠.	•	• •	• •	•	•	٠.	•

10 [*Maximum mark: 5*]

If $\alpha^2 \beta$ and $\beta^2 \alpha$ are the roots of the equation $x^2 - 10x - 8 = 0$, find the quadratic equation with the roots, α and β .

[$\alpha^2\beta + \beta^2\alpha = 10$
	$\alpha\beta(\alpha+\beta)=10$
	$\alpha^3 \beta^3 = -8$
	$\alpha^3 \beta^3 = -8$ $\alpha \beta = -2$
	$-2(\alpha+\beta)=10$
	$\alpha + \beta = -5$ $x^2 + 5x - 2 = 0$
	$x^2 + 5x - 2 = 0$
L	

11 [*Maximum mark:* 9]

Answer the whole of this question on a sheet of graph paper.

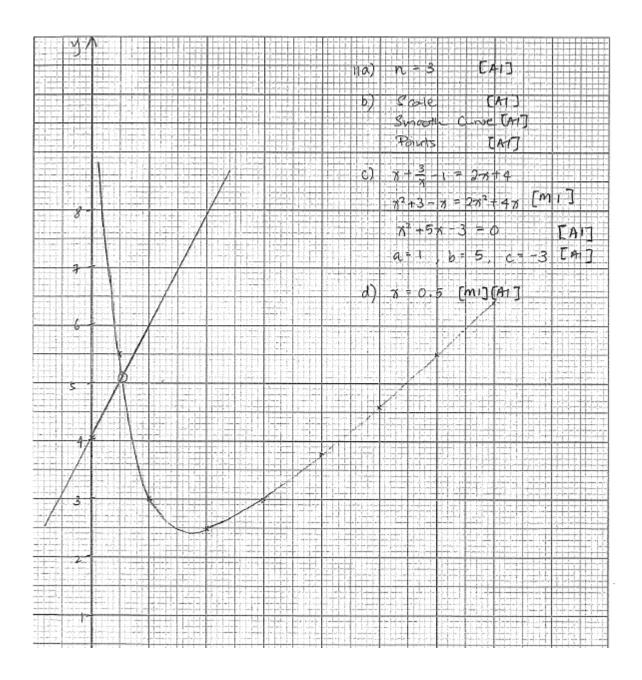
Given that the variables x and y are connected by the equation $y = x + \frac{3}{x} - 1$. The table below shows some values of x and the corresponding values of y, correct to 1 decimal place.

Ī	х	0.5	1	2	3	4	5	6	7
Ī	у	5.5	3	2.5	n	3.8	4.6	5.5	6.4

(a) Calculate the value of n.

[1 mark]

(b) Using a scale of 2 cm to represent 1 unit on the x – axis and 1 cm to represent 1 unit on the y – axis, draw the graph of $y = x + \frac{3}{x} - 1$ for $0.5 \le x \le 7$.


[3 marks]

(c) Using the same axes, draw the graph of y = 2x + 4. The roots of the equation $ax^2 + bx + c = 0$ is given by the x – coordinate of the point of intersection of the curve $y = x + \frac{3}{x} - 1$ and the line y = 2x + 4. Find the values of a, b and c.

[3 marks]

(d) Use your graph to write down the solutions of the equation $ax^2 + bx + c = 0$ in (c). [2 marks]

****** END OF PAPER 1 *******

