Geometry, mensuration practice questions

1 Points A, B, C and D lie on a circle.

AC is a diameter of the circle.

AEC and BEDF are straight lines.

AF // BC.

AD = AC.

Angle $ADB = 36^{\circ}$

- (a) Show that triangle AED and triangle BEC are similar [3]
- **(b)** Find
 - (i) angle ACB [Ans: 36°] [1]
 - (ii) angle BAD [Ans: 72°] [2]
 - (iii) angle CAD [Ans: 18°] [2]
 - (iv) angle DAF [Ans: 18°] [1]
- (c) Hence, explain why AD = DF. [Ans: angle DFA = angle DAF = 18°] [2]

2 The diagram below shows a regular hexagon with sides 10 cm.

- (a) (i) Find the interior angle of the regular hexagon. [Ans: 120°] [2]
 - (ii) Hence, find the area of the regular hexagon. [Ans: 260 cm²] [3]
- (b) In the diagram, a hexagonal pyramid with ON as the height and sides of 10 cm.M is the midpoint of AB.AN = 13 cm.

- (i) Calculate the volume of the pyramid. [Ans: 720 cm³] [4]
- (ii) Calculate the **total** surface area of the pyramid. [Ans: 440 cm²] [3]

3 A(0,4) and B lie on the y-axis.

D lies on the x-axis.

A is the midpoint of OB.

OB : OD = 2 : 3.

(a) Find the equation of AC. [Ans:
$$y = 2/5x + 4$$
 or $5y = 2x + 20$] [2]

4 A nonagon (9-sided polygon) has six $(x + 2)^{\circ}$ and three $(2x)^{\circ}$ interior angles.

A circle with centre O has a radius of 8 cm overlaps with rectangle PQRS. The length of PQRS is 15 cm and its perimeter is 40 cm.

- (a) Calculate the shaded area. [Ans: 18.1 cm²] [5]
- (b) Calculate the perimeter of the shaded region. [Ans: 44.4 cm] [4]

A sports company manager wanted to make tennis ball containers. Each tennis ball has a radii of 3.35 cm. He wanted to fit exactly 4 tennis balls into two different boxes. **Box A** is a closed cuboid while **Box B** is a closed cylinder. Both boxes have the same height.

The cost per cm² of plastic to make the box is \$0.60. Which box should the manager choose if he only puts aside a budget of \$400. Show **all** your workings. [7] [Ans: **Box A** costs \$484.81, **Box B** costs \$380.77. He should choose **Box B**.]

7 AB and CD are sides of the two buildings. The angle of elevation of C from B is 42° . The angle of depression of C from A is 38° . The distance between the two buildings is 56 m.

[5]

[4]

8 **Diagram I** show a kitchen sink. The sink is a trapezoidal prism with height 15 cm. The prism (sink) is removed from the cuboid (table). **Diagram II** show the plane view of the sink. All dimensions are in centimetres.

Calculate the volume of the remaining solid. [Ans: 235295 cm³]

OAB is a triangle.

$$\overrightarrow{OA} = \mathbf{a} \text{ and } \overrightarrow{OB} = \mathbf{b}.$$

$$OQ : OB = 3 : 5.$$

P is the midpoint of A and B.

(a) Express your answers in terms of a and b. Find

(i)
$$\overrightarrow{AB}$$
 [Ans: **b** - **a**] [1]

(ii)
$$\overrightarrow{OP}$$
 [Ans: $\frac{1}{2}$ $\mathbf{a} + \frac{1}{2}$ \mathbf{b}] [2]

(b) Explain why
$$ABQX$$
 is a trapezium. [Ans: $\overrightarrow{AB} = 3/10 \ \overrightarrow{XQ}$] [3]

(c) Find

(ii) area of
$$PBQX$$
: area of triangle OAB . [Ans: 2:5] [2]

PQRS and TUVS are congruent quadrilaterals.

Angle $PQR = 165^{\circ}$ and angle $UVS = 67^{\circ}$.

Angle QPS = angle UTS = 90°.

PS = 5.6 cm, TU = 4.9 cm and VS = 7.8 cm.

Find

(b) In the diagram, AB = AQ, PA = QS and AB is parallel to QR. QR and AC are produced to meet at S.

- (i) Name the triangle that is congruent to triangle PAB. [1] [Ans: Triangle SAQ]
- (ii) Show that triangle PAC is similar to triangle SRC. [Ans: AA Test] [2]

Given that AP = 9 cm, AC = 3 cm and RS = 5 cm, find the length of

(iii)
$$CR$$
 [Ans: 1.67 cm] [2]

(iv)
$$AB$$
 [Ans: 3 cm] [4]

(c)

A, B and C are similar cones.

The ratio volume of cone A: volume of cone B: volume of cone C = 1:3:8. (2022 O level Paper 2)

- (i) Find the ratio height of cone A: height of cone C. [Ans: 1:2]
- (ii) Find the surface area of cone B as a percentage of the surface area of cone C. [Ans: 52.0 %] [2]