
Introduction to organic chemistry

Fuel: Substance that burns exothermically.

5. Larger hydrocarbon has higher boiling point and collected at the bottom column.

Homologous series: A family of organic compounds with same general formula and similar chemical properties.

Members in the same homologous series

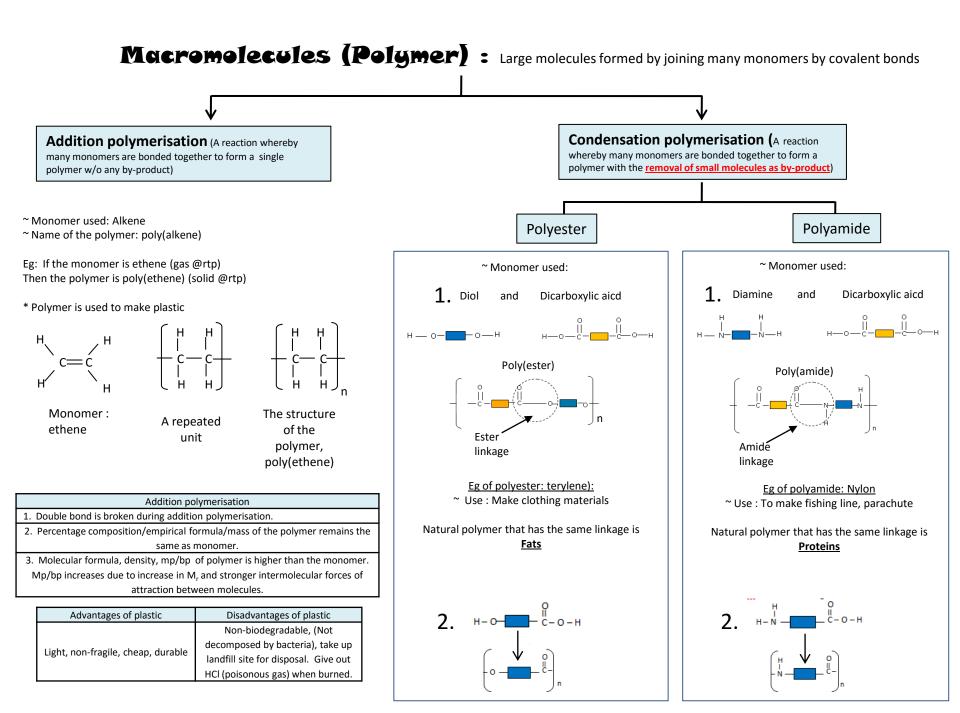
1. Has same functional group, general formula and similar chemical properties

*<u>Functional group</u>: An atom or group of atoms that gives a molecule its characteristic properties.

2. Has a gradual change in their physical properties up the series (Mp/bp \uparrow , density \uparrow , viscosity \uparrow , flammability \downarrow)

3. Differs from the next by a $-CH_2$ - unit.

5. Differs from the next by a "eng annt.							
	Alkane	Alkene	Alcohol (liquid)	Carboxylic acid (liquid)			
General formula	C _n H _{2n+2}	C_nH_{2n}	C _n H _{2n+1} OH	C _n H _{2n+1} COOH			
Functional group	C-C	C=C	-O-H	-соон			
First 4 members	1C : Methane (CH ₄ GAS) 2C : Ethane (C_2H_6 GAS) 3C : Propane (C_3H_8 GAS) 4C : Butane (C_4H_{10} GAS)	2C: Ethene $(C_2H_4$ GAS) 3C: Propene $(C_3H_6$ GAS) 4C: Butene $(C_4H_8$ GAS)	$\begin{array}{c} 1C:\\ Methanol\\ (CH_3OH)\\\\ 2C:\\ Ethanol\\ (C_2H_5OH)\\\\ 3C:\\ Propanol\\ (C_3H_7OH)\\\\\\ 4C:\\ Butanol\\ (C_4H_9OH)\\\end{array}$	$\begin{array}{c} 1{\rm C}:\\ {\rm Methanoic\ acid}\\ ({\rm HCOOH})\\ 2{\rm C}:\\ {\rm Ethanoic\ acid}\\ ({\rm CH_3COOH})\\ 3{\rm C}:\\ {\rm Propanoic\ acid}\\ ({\rm C_2H_5COOH})\\ 4{\rm C}:\\ {\rm Butanoic\ acid}\\ ({\rm C_3H_7COOH})\\ \end{array}$			


Isomer Compound with <u>same molecular formula</u> but <u>different structural formula.</u>

Alkane and Alkene (Hydrocarbon)

Reaction Equation			Condition	Application		
Alkane (Saturated)	Combustion Incomple		Incomple	: Alkane + $O_2 \rightarrow CO_2 + H_2O$ te : Alkane + $O_2 \rightarrow CO + H_2O$ ht be formed)		
				+ Cl ₂ → chloromethane + HCl Cl ₂ (g) → CH ₃ Cl (g) + HCl (g)	UV light	
	Cracking $C_{10}H_{22} \rightarrow *Total nu$		C ₁₀ H ₂₂ → *Total nu	ne \rightarrow Small alkane + small alkene + H ₂ 2C ₄ H ₈ + C ₂ H ₆ mber of C and H atoms in products must as those in reactants.	Catalyst Al ₂ O ₃ & SiO ₂ (Broken porous/china pot), high temperature, more than 600°C	To meet the high demand of small alkanes that are used as fuel.
					•	
Alkene (Unsaturated)	Combustion		tion	Complete: Alkene + $O_2 \rightarrow CO_2 + H_2O$ Incomplete: Alkene + $O_2 \rightarrow CO + H_2O$		*Alkene is less flammable than alkane due to higher % of carbon
	A d i t i n	H ₂ (hydrog	genation)	Alkene + $H_2 \rightarrow Alkane$	Nickel catalyst, 200°C	To convert vegetable oil (alkene) into margarine (alkane)
		Br ₂ (Bromi	nation)	Alkene + Br ₂ \rightarrow Dibromoalkane	Room temperature	TEST for alkene!!! Reddish- brown aqueous Br ₂ will turn colourless immediately if alkene is present.
		H ₂ O (H	ydration)	Alkene + steam → Alcohol	300°C, 65 atm, Phosphoric (v) acid, H ₃ PO ₄ as catalyst	
	Addition polymerisation			n (monomer) \rightarrow polymer n (ethene) \rightarrow (ethene) _n Ethene \rightarrow poly(ethene) n $\begin{pmatrix} H & H \\ c = c \\ H & H \end{pmatrix} \longrightarrow \begin{pmatrix} H & H \\ -c \\ -c \\ H & H \end{pmatrix}_{n}$		To make plastic water bucket, cling film etc. *Disadvantage of plastic: Non- biodegradable, takes up landfill site

Alcohol and Carboxylic acid

Reaction		Equation	Condition	Application/remarks
Alcohol	Combustion	Alcohol + $O_2 \rightarrow CO_2 + H_2O$		 <u>Advantages of ethanol as fuel</u> <u>Clean fuel</u> (Little carbon monoxide or soot is formed) <u>carbon neutral</u> fuel (no ↑ in the amount of CO₂ in air when burnt) Renewable fuel
	Oxidation	Alcohol + [O] → Carboxylic acid + H ₂ O Eg: Propanol + [O] → Propanoic acid + H ₂ O * Test for alcohol	Acidified potassium manganate (VII) (KMnO ₄), heat under reflux	Oxygen gas in the presence of bacteria can oxidize alcohol too Note: KMnO ₄ can be used to test for alcohol
	Fermentation	yeast Glucose → Ethanol + carbon dioxide $C_6H_{12}O_6 \rightarrow 2C_2H_5OH + 2CO_2$	 37°C Yeast Absence of oxygen gas to prevent the oxidation of ethanol into ethanoic acid by the oxygen. 	 <u>Disadvantages of fermentation</u> Slow Fermentation gives low yield (15%) as high concentration of ethanol kills the yeast Need to carry out fractional distillation to obtain pure ethanol from the reaction mixture. <u>Uses of alcohol:</u> Solvent for organic compound, alcoholic drinks (ethanol), and fuel.
			r	
Carboxylic acid	Acid's reactions (Neutralization)	- Acid + metal \rightarrow salt + H ₂ - Acid + base \rightarrow salt+H ₂ O - Acid + carbonate \rightarrow salt + H ₂ O + CO ₂ Eg: Magnesium + ethanoic acid \rightarrow Magnesium ethanoate + H ₂		Carbonate can be used to test for carboxylic acid since effervescence is observed.
	Esterification	Alcohol + carboxylic acid \leftrightarrow ester + H ₂ O Eg: Ethanol + butanoic acid \leftrightarrow Ethyl butanoate + H ₂ O C ₃ H ₇ COOH + C ₂ H ₅ OH \leftrightarrow C ₃ H ₇ COOC ₂ H ₅ + H ₂ O	Concentrated sulfuric acid as catalyst, heat under reflux	Uses of ester (has a sweet smelling): To make perfume, food flavouring, and solvent for organic chemicals

