Chapter 3: Binomial Distribution

1.	JPJO	C JC2 Prelin	n 8865/201	9/Q6					
	Mandarin oranges are supplied to the supermarkets in boxes of 12. It is found that on average,								
	7%	of the mand	arin orange	s are bac	d when the	boxes are o	pened.		
	(i)	For a rand	omly chose	en box of	mandarin	oranges, fir	nd the prob	ability that	
		(a) all the	- mandarin c	oranges a	re good.	C ,	1	•	[1]
		(b) at leas	t 25% of th	e manda	rin oranges	are bad			[2]
	(ii)	A custom	2570 of the or bought 2		of mandar	in oranges	Find the r	robability that f	ewer than A
	(11)		1 Dought 2	U DUXES					ewer than 4
		boxes	have	at	least	25%	bad	mandarin	oranges.
	[2]								
						An	swer: (ia)	0.419, (ib) 0.046	58, (ii) 0.987
1.	JPJC	C JC2 Prelin	n 8865/201	9/Q6 (So	olutions)				
(ia)	Let X	be the rand	om variable	e denotin	g the numb	per of bad m	nandarin or	ranges out of 12	
	$X \sim I$ D(V)	3(12, 0.07)	$506 \sim 0.410$	0 (3 of)					
	Δ lterr	-0) - 0.41c	J90 ≈ 0.41	9 (381)					
	Let X' be the random variable denoting the number of good mandarin oranges out of 12			2					
	X '~	B(12,0.93)			-	-		-	
	P(X')	=12) = 0.41	.8596 ≈ 0.4	19 (3sf)					
(ib)	P(X)	$\geq 0.25 \times 12) =$	$= P(X \ge 3)$						
	=1-1	$P(X \le 2)$							
	=1-0).95320							
	= 0.04	46797 ≈ 0.0	468 (3sf)						
(ii)	Let Y	be the rando	om variable	e denotin	g the numb	per of cartor	ns out of 20) with at least 25	5% bad
	$Y \sim F$	ann oranges 3(20,0.0467	968)						
	P(<i>Y</i> <	$(4) = P(Y \leq$	(3) = 0.9872	$28 \approx 0.98$	7 (3sf)				

2. MI PU2 Prelim 8865/2019/Q10

Millennia Tour operates a half-day city tour on an open double-decked bus. A bus has 22 seats and Millennia Tour will accept a maximum of 22 passenger bookings per bus. Past records show that on average 30% of the passengers do not turn up for the tour after booking. Tickets sold are non-refundable and non-exchangeable. The tour is always fully booked on weekends.

Find the probability that, in a bus on a randomly chosen Saturday,

- (i) there are exactly 7 passengers who do not turn up for the tour after booking, [1]
- (ii) there are at least 17 passengers who turn up for the tour after booking. [2]

	(iii) 8 open double-decked buses are fully booked on a randomly chosen Saturday. Find the
	probability that at least 3 of these buses have at least 17 passengers who turn up for the tour
	after booking. [3]
	During holiday peak seasons, Millennia Tour decides to maximise profit by accepting n bookings
	per bus on weekends, where $n \ge 22$.
	(iv) The probability that sufficient seats are available for all passengers who turn up for the tour
	on a randomly chosen Saturday during a holiday peak season is more than 0.9. Find the
	largest value of n . [3]
2	Answer: (i) 0.177 (ii) 0.313 (iii) 0.482 (iv) 27
2.	MI PU2 Prelim 8865/2019/Q10 (Solutions)
(1)	Let w be the random variable denoting the number of passengers who do not turn up for the tour after booking, out of 22. Then $W \sim B(22, 0.3)$
	and booking, but of 22. Then $W = D(22, 0.5)$.
	P(W = 7) = 0.17707 = 0.177
(;;)	1(n - 1) = 0.11707 = 0.177
(11)	Let Ω be the random variable denoting the number of passengers who turn up out of 22
	$O \sim B(22, 0.7)$.
	$P(Q \ge 17) = 1 - P(Q \le 16) = 0.31341 = 0.313$
	Method 2
	$\overline{P(W \le 5)} = 0.31341 = 0.313$
(iii)	Let X be the random variable denoting the number of buses with at least 17 passengers who turn
` ´	up for the tour, out of 8.
	$X \sim B(8, 0.31341)$
	$P(X \ge 3) = 1 - P(X \le 2) = 0.48216 = 0.482$
(iv)	Let <i>Y</i> be the random variable denoting the number of passengers who turn up, out of <i>n</i> passengers
	(bookings).
	Then $Y \sim B(n, 0.7)$.
	$\mathbf{P}(\mathbf{W}, \mathbf{c22}) > 0.0$
	$P(Y \le 22) \ge 0.9$
	Using GC,
	n = P(Y < 22)
	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
	NY8= 32 1 ×100 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	Hence the maximum bookings should be 27.

3.	HCI JC2 Prelim 8865/2019/Q10
	At the coffee and tea stall in the canteen of Hwa Chong Institution, on average, 70% of the students
	will order ice lemon tea. A random sample of <i>n</i> students are interviewed on their preference.
	(i) State in context, two assumptions needed for the number of students who will order ice lemon
	tea to be well modelled by a binomial distribution. [2]
	Assume now that the number of students who will order ice lemon tea follows a binomial
	distribution.
	It is given that $n = 15$ for the rest of the question.
	(ii) Find the probability that exactly 10 students will order ice lemon tea. [1]
	(iii) Find the probability that more than 9 students will order ice lemon tea. [2]
	(iv) If the probability of at least r students ordering ice lemon tea is not less than 0.8, find the greatest value of r . [3]
	Answer: (ii) 0.206 (iii) 0.722 (iv) 9
3.	HCI JC2 Prelim 8865/2019/Q10 (Solutions)
(i)	Assumptions:
	 The probability of students ordering ice lemon tea is constant at 0.7 for every student. The order of a student is independent of the order of another student.
(ii)	Let <i>X</i> be the random variable denoting the number of students ordering ice lemon tea (out of 15 students).
	$X \sim B(15, 0.7)$
	$P(X = 10) = 0.20613 \approx 0.206 \ (3 \text{ s.f.})$
(iii)	P(X > 9)
	$=1-\mathbf{P}(X\leq 9)$
	= 0.721621
	≈ 0.722
(iv)	$P(X \ge r) \ge 0.8$
	$1 - P(X \le r - 1) \ge 0.8$
	$P(X \le r-1) \le 0.2$
	From G.C.,
	$P(X \le 9 - 1) = 0.1311 < 0.2$
	$P(X \le 10 - 1) = 0.2784 > 0.2$
	$\therefore r - 1 = 9 - 1 \implies r = 9$
	Hence the greatest value of <i>r</i> is 9.

4.	EJC	C JC2 Prelim 8865/2019/Q7
	In a l fruit 6 are	arge number of apples, 2% of the apples are rotten. Uncle Ee buys cartons of apples from the wholesaler every day. He randomly selects 6 apples from a carton and accepts the carton if all not rotten.
	(i)	Explain the significance of the phrase 'large number' in the first sentence of the question. [1]
	(ii)	Find the probability that Uncle Ee accepts a carton of apples. [1]
	(iii)	Uncle Ee first picks 3 cartons of apples, of which at least 2 cartons are accepted. He then decides to buy another 5 cartons. Find the probability that exactly 6 of the 8 cartons are accepted. [4] Answer: (ii) 0.886 (iii) 0.163
4.	EJC	C JC2 Prelim 8865/2019/Q7 (Solutions)
	(i)	

This is to assume that the conditional probability of the event that each apple (among the ones in each carton) is rotten is approximately the same and hence the trials (selection of apples) may be considered to be independent.

(ii)

Let X be the random variable denoting the number of apples, out of 6, that are rotten.

 $X \sim B(6, 0.02)$

P(carton is accepted) = P(X = 0)

= 0.88584 = 0.886 (3sf)

Alternatively,

Let Y be the random variable denoting the number of apples, out of 6, that are not rotten

 $Y \sim \mathrm{B}(6, 0.98)$

P(carton is accepted) = P(Y = 6)

= 0.88584 = 0.886 (3sf)

(iii)

Let *Q* be the random variable denoting the number of cartons, out of first 3, that are accepted. $Q \sim B(3,0.88584)$ Let *R* be the random variable denoting the number of cartons, out of next 5, that are accepted. $R \sim B(5,0.88584)$ $P(\text{exactly 6 out of 8 accepted}|\text{at least 2 out of first 3 cartons accepted}) = \frac{P(Q = 2, R = 4) + P(Q = 3, R = 3)}{P(Q \ge 2)}$ $= \frac{P(Q = 2)P(R = 4) + P(Q = 3)P(R = 3)}{1 - P(Q \le 1)}$ = 0.163 (3sf)

5. NJC JC2 Prelim 8865/2019/Q7 A survey was conducted with a large number of young employees who were asked to select one SkillsFuture programme that they would like to enroll in to further develop their skills. The survey showed that 53% would like to enroll in infocomm technology programme, 38% would like to enroll in financial management programme and 9% would like to enroll in human resource programme. Fifteen young employees who took part in the survey were randomly selected. Find the probability that (i) exactly twelve young employees said that they would like to enroll in either infocomm technology programme or financial programme, [2] no less than five young employees said that they would like to enroll in human resource (ii) programme. [2] Suppose now that there are *n* young employees who took part in the survey were randomly selected, write down an inequality in terms of n such that the probability of thirty or thirty-one young employees said that they would not like to enroll in financial management programme is at least 0.22. Hence, find the least value of *n*. [3] Answer: (i) 0.107 (ii) 0.0082 (iii) 47 NJC JC2 Prelim 8865/2019/Q7 (Solutions) 5. Let A be the random variable denoting the number of young employees, out of 15, who would (i) like to enroll in either infocomm technology programme or financial programme. $A \sim B(15, 0.91)$ $P(A=12) = 0.1069635 \approx 0.107$ Let *H* be the random variable denoting the number of young employees, out of 15, who would (ii) like to enroll in human resource programme. $H \sim B(15, 0.09)$ $P(H \ge 5) = 1 - P(H \le 4)$ = 0.0082037≈ 0.00820 Let *M* be the random variable denoting the number of young employees, out of *n*, who would not like to enroll in financial management programme. $M \sim B(n, 0.62)$

$P(M = 30 \text{ or } 31) \ge 0.22$ $\Rightarrow P(M = 30) + P(M = 31) \ge 0.22$ $\Rightarrow \binom{n}{30} (0.62)^{30} (0.38)^{n-30} + \binom{n}{31} (0.62)^{31} (0.38)^{n-31} \ge 0.22$ Using GC, Workfill Floot AUTO REAL RADIAN HP Plott Plot2 Plot3 NV1EBbinompdf(X.0.62.30)+tb NV2= NV3= N	$P(M = 30 \text{ or } 31) \ge 0.22$ $\Rightarrow P(M = 30) + P(M = 31) \ge 0.22$ $\Rightarrow \binom{n}{30} (0.62)^{30} (0.38)^{n-30} + \binom{n}{31}$ Using GC,	$22 \\ \left(0.62 \right)^{31} \left(0.38 \right)^{n-31} \ge 0.22$
$\Rightarrow P(M = 30) + P(M = 31) \ge 0.22$ $\Rightarrow \binom{n}{30} (0.62)^{30} (0.38)^{n-30} + \binom{n}{31} (0.62)^{31} (0.38)^{n-31} \ge 0.22$ Using GC, NORHAL FLOAT AUTO REAL RADIAN HP Plott Plot2 Plot3 N1 = 0 + binomedf (X.0.62.30) + binomedf (X.0.62.31) N2 = 0 + bi	$\Rightarrow P(M = 30) + P(M = 31) \ge 0.2$ $\Rightarrow \binom{n}{30} (0.62)^{30} (0.38)^{n-30} + \binom{n}{31}$ Using GC,	$22 \\ \left(0.62\right)^{31} \left(0.38\right)^{n-31} \ge 0.22$
$ \Rightarrow \binom{n}{30} (0.62)^{30} (0.38)^{n-30} + \binom{n}{31} (0.62)^{31} (0.38)^{n-31} \ge 0.22 $ Using GC, NORHAL FLOAT AUTO REAL RADIAN HP Plot Plot2 Plot3 NY1Bbinompdf(X.0.62.30)+tb N2= N2= N2= NORHAL FLOAT AUTO REAL RADIAN MP Plot Plot2 Plot3 NY1B + binompdf(X.0.62.31) N2= N2= N2= N2= N2= N2= N2= N2=	$\Rightarrow \binom{n}{30} (0.62)^{30} (0.38)^{n-30} + \binom{n}{31}$ Using GC,	$\left(0.62\right)^{31} \left(0.38\right)^{n-31} \ge 0.22$
Using GC, NORMAL FLOAT AUTO REAL RADIAN MP Plot1 Plot2 Plot3 NY1Bbinompdf(X.0.62.30)+t+ NY2= NY2= NY2= NY2= NY2= NY2= NY3= NORMAL FLOAT AUTO REAL RADIAN MP PRESS + FOR ATbi X Y1 43 0.1255 46 0.2041 47 0.2206 48 0.2297 48 0.2297 48 0.2297 49 0.2312 52 0.1964 53 0.1762 X=47	Using GC,	
NORHAL FLOAT AUTO REAL RADIAN HP Ploti Plot2 Plot3 NY1BbinomPdf(X,0.62,30)+tb N2= N2- N2- NORHAL FLOAT AUTO REAL RADIAN HP Ploti Plot2 Plot3 NY1BbinomPdf(X,0.62,30)+tb N2= N2- N0RHAL FLOAT AUTO REAL RADIAN HP Plot1 Plot2 Plot3 NY1Bd(X,0.62,30)+tb NY2= N2- N0RHAL FLOAT AUTO REAL RADIAN HP N3= NORHAL FLOAT AUTO REAL RADIAN HP N3= N0RHAL FLOAT AUTO REAL RADIAN HP N3= N3= N3= N3= N3= N3= N3= N3= N3= N3= N3= N3= N3= N3= <td></td> <th></th>		
Plot1 Plot2 Plot3 NY1 Bbinompdf $(X, 0, 62, 30)$ +t+ NY2= NY2= NY2= NY2= NY2= NY2= NY3=	NORMAL FLOAT AUTO REAL RADIAN MP	AL FLOAT AUTO REAL RADIAN MP 🔲
NV1BbinomPdf(X,0.62,30)+te NV1B0+binomPdf(X,0.62,31) NV2= NV2= NV3= NV3=	Plot1 Plot2 Plot3 Plo	t1 Plot2 Plot3
NORMAL FLOAT AUTO REAL RADIAN HP PRESS + FOR ATBI Y4 0.1255 Y4 0.1255 Y4 0.1255 Y6 0.2041 Y7 0.2206 Y8 0.2254 50 0.2254 51 0.2134 52 0.1762 X=47	NY1Ebinompdf(X,0.62,30)+t)	1 = (1+D1 nompd+(X, 0, 62, 31)
NORMAL FLOAT AUTO REAL RADIAN MP Image: Constraint of the system of		
	NORMAL FLOAT AUTO REAL RADIAN MP Y1 X Y1 43 0.1225 44 0.1545 45 0.1815 46 0.2041 47 0.2266 48 0.2257 49 0.2212 50 0.2112 50 0.2254 51 0.2134 52 0.1964 53 0.1762	

6. RI JC2 Prelim 8865/2019/Q7

At a certain restaurant, customers can pay for their food using either cash, NETS or credit card. There are no other mode of payments and the choice of payment for each customer is independent of another customer. It is given that the probability of a customer paying using cash, NETS or credit card is p, 2p and 3p respectively.

During a particular lunch hour, there are 6 customers in the queue at the cashier.

- (i) Find the probability that at least 2 of them pay with a credit card.
- (ii) The 3rd customer in the queue pays by NETS. Find the probability that fewer than 3 customers in the queue pay by NETS. [3]

Answer: (i) 0.891 (ii) 0.461

[3]

RI JC2 Prelim 8865/2019/Q7 (Solutions)

6.

(i) Total probability = $p + 2p + 3p = 1 \Rightarrow p = \frac{1}{6}$

Let *X* be the random variable denoting the number of customers (out of 6) who pay with a credit card, $X \sim B\left(6, \frac{1}{2}\right)$

$$P(X \ge 2) = 1 - P(X \le 1) = 0.891 (3 \text{ sf})$$

(ii) Let *Y* be the random variable denoting the number of customers (out of 5) who pay by NETS, $Y \sim B\left(5, \frac{1}{3}\right)$ P (*Y* ≤ 1) = 0.461 (3 sf)

7.	DHS JC2 Prelim 8865/2019/Q8
	At a funfair, Alice plays a game by tossing a biased coin 80 times using a computer simulation. Let X be the random variable denoting the number of heads obtained and n be the probability of
	The the random variable denoting the number of neads obtained and p be the probability of obtaining a head. It is given that $80 + F(Y) = 6Var(Y)$
	$\frac{1}{1} = 0 \text{if } (1) = 0 \text{if } $
	(i) Show that $p = \frac{1}{3}$. [3]
	(ii) Find the probability of Alice obtaining at least 30 heads in the game, given that she had obtained heads in her first 5 tosses. [3]
	Answer: (i) $\frac{1}{3}$ (ii) 0.543
7	DHS IC2 Prelim 8865/2019/08 (Solutions)
(i)	$Y \sim B(80, p)$
	80 + 80p = 480p(1-p)
	$1+p=6p-6p^2$
	$6p^2 - 5p + 1 = 0$
	$p = \frac{1}{3}$ or $p = \frac{1}{2}$ (rejected as coin is not fair)
(ii)	Let W be the random variable denoting the number of heads obtained in the last 75 tosses
	$W \sim B(75, \frac{1}{3})$
	Required probability
	$= P(W \ge 25)$
	$=1-\mathrm{P}(W\leq 24)$
	= 0.543

8. TMJC JC2 Prelim 8865/2019/Q10

A company produces a certain type of batteries. The batteries are packed in boxes of 24. On average, 5% of the batteries produced by the company are faulty.

(i) The number of batteries that are faulty in a box is denoted by *X*. State, in context, one assumption needed for *X* to be well modelled by a binomial distribution. [1]

Assume now that *X* follows a binomial distribution.

(ii) Find P(X = 3 or 4). [2] (iii) Find the probability that a box of 24 batteries contains more than two batteries that are faulty. [2]

The boxes are packed into cartons. Each carton contains four boxes.

	(iv) Find the probability that a carton contains at most one box with more than two batteries that
	are faulty. [2]
,	The company conducts a test to check if the batteries are faulty. Batteries identified to be faulty are
	discarded. If a battery is faulty, the probability that the test correctly identifies the battery as faulty
-	is 0.96. If a battery is not faulty, the probability that the test incorrectly identifies the battery as
	faulty is <i>n</i> . The probability that the test correctly identifies a battery as faulty or not faulty is 0.9315
-	(v) Show that $n = 0.07$ [1]
	(v) Show that $p = 0.07$. [1]
	(vi) Find the probability that a battery identified as faulty by the test is not faulty. [3]
(vii) Discuss briefly if the test is worthwhile. [1]
	Answer: (ii) 0.110 (iii) 0.116 (iv) 0.931 (v) 0.07 (vi) 0.581
8.	TMJC JC2 Prelim 8865/2019/Q10 (Solutions)
(i)	A battery being faulty is independent of any other battery being faulty.
(11)	Let X be the random variable denoting the number of batteries out of 24 that are faulty x = P(24, 0.05)
	$A \sim B(24, 0.05)$
	P(X = 3 or 4)
	= P(X = 3) + P(X = 4)
(iii)	=0.110 (to 5 s.f)
(111)	P(X > 2)
	$=1-P(X\leq 2)$
	= 0.11594
(:)	= 0.116 (to 3 s.f)
(1V)	Let Y be the random variable denoting the number of boxes, out of 4, that contain more than two batteries that are faulty
	$Y \sim B(4, 0.11594)$
	$P(Y \leq 1)$
	= 0.931 (to 3 s.f)
(v)	
	0.96 Identified as Faulty
	0.05 Faulty Faulty
	0.04 Identified as Not Faulty
	0.95 Not p Identified as Faulty
	Faulty
	1 - p Identified as Not Faulty

	P(test correctly identifies batteries as faulty or not faulty) = 0.9315 (0.05)(0.96)+(0.95)(1-p)=0.9315 $p=1-\frac{0.8835}{0.95}=0.07$ (shown)
(vi)	P(battery is not faulty identified as faulty)
	= P(battery is not faulty and identified as faulty)
	P(identified as faulty)
	(0.95)(0.07)
	$= \frac{1}{(0.05)(0.96) + (0.95)(0.07)}$
	= 0.581 (to 3 s.f)
(vii)	Even though it is given that the test correctly identifies batteries as faulty or not faulty with a high probability of 0.9315, from part (vi), it is known that 58.1% of the batteries that are identified as faulty by the test are not faulty but end up being discarded. Therefore, the test is not worthwhile.
	The test is worthwhile since the probability that the test correctly identifies batteries as faulty or not faulty is high at 0.9315