2021 JC2 H2 Preliminary	Examination Paper	3 Suggested Solutions
	-	

1			$m = \frac{T^2 k}{4\pi^2}$	
			$=\frac{3.2^2(250)}{1}$	
			$4\pi^2$ = 64.846 kg	1
			$\frac{\Delta m}{m} = 2\frac{\Delta T}{T} + \frac{\Delta k}{k}$	
			$\Delta m = \left(2\frac{\Delta T}{T} + \frac{\Delta k}{k}\right)m$	
			$=(2\frac{0.01}{320}+\frac{5}{250}) 64.846$	
			= 1.7 kg	1
			Thus, mass of the astronaut = (65 \pm 2) kg	1
2	(a)	(i)	$s_{y} = u_{y}t + \frac{1}{2}a_{y}t^{2}$	
			$\Rightarrow 1.0 = u_y(1.1) + \frac{1}{2}(-9.81)(1.1)^2$	1
			$\Rightarrow u_{y} = 6.30 \text{ m s}^{-1}$	1
		(ii)	$s_x = u_x t$	
			$\Rightarrow 2.8 = u_x(1.1)$	1
			$\Rightarrow u_x = 2.545$	
			Thus, $\theta = \tan^{-1}(\frac{u_y}{u_x})$	1
			$=$ tan ⁻¹ ($\frac{6.305}{2.545}$) = 68.0°	1

3	(a)	The spring <u>does not obey</u> Hooke's Law.	1
		The straight line in the graph does not pass through the origin	
		OR	1
		The tension force in the spring is not proportional to the extension.	
		* Answer must derive evidence from the graph.	
	(b)	Remove the masses and the <u>spring should return to its original length</u> if the spring is not permanently deformed.	1
	(c)	Work done is obtained from the area under the graph multiplied by g.	1
		* Student must attempt to explain the approach taken.	
		Work done = $\frac{1}{2}$ [(70 + 145) \times 10 ⁻³] \times 120 \times 10 ⁻³ \times 9.81	1
		= 0.127 J (0.13 J)	1
4	(a)	By the principle of conservation of energy,	
		KE_{Xi} + KE_{Yi} + GPE_{Xi} + GPE_{Yi} = KE_{Xf} + KE_{Yf} + GPE_{Xf} + GPE_{Yf} + WD against friction	2
		$0 + 0 + 0 + 0 = KE_{xf} + KE_{yf} + (4.0)(9.81)(3.0 \sin 30^{\circ}) + (5.0)(9.81)(-3.0) + (10.0)$ (3.0)	1
		KE _{xf} + KE _{Yf} = 58 J (or 58.3 J)	
		* Correct calculation of change in GPE of X and change in GPE of Y [M1]	
		* Correct substitution in COE equation [M1]	
	(b)	Since X and Y are connected by an inextensible cord, both bodies attain the same final speed.	
		$\frac{1}{2}(4.0+5.0)v^2 = 58.3$	
		$v_{\rm X} = v_{\rm Y} = 3.6 {\rm ms}^{-1}$	1

5	(a)	(i)	The <u>centripetal force is provided by the gravitational force</u> acting on stars A and B.	1
			By <u>Newton's Third Law</u> , the <u>gravitational force acting on stars A and B</u> are of <u>equal magnitude and opposite direction</u> .	1
			Hence, the centripetal force acting on both stars has the same magnitude.	
		(ii)	$\omega = \frac{2\pi}{T}$	
			$=\frac{2\pi}{1000000000000000000000000000000000000$	1
			$4.0 \times 365 \times 24 \times 60 \times 60$ $\omega = 5.0 \times 10^{-8}$ or 4.98×10^{-8} rads ⁻¹	1
	(b)	(i)	Since the centripetal force acting on star A and B are of equal	
			$M_{\rm A} \omega^2 d = M_{\rm B} \omega^2 (2.8 \times 10^8 - d)$	1
			$\frac{M_{\rm A}}{M_{\rm A}} = \frac{(2.8 \times 10^8) - d}{100} = 3.0$	1
			$M_{\rm B}$ d	
			$4d = 2.8 \times 10^8$ $d = 7.0 \times 10^7$ km	1
		(11)	$u = 7.0 \times 10$ km	
		(11)	Gravitational force provides for the centripetal force acting on star A.	1
			$GM_{A}M_{B} = -M_{B}\alpha^{2}d$	
			$(2.8 \times 10^{5} \times 10^{3})^{2} = M_{A} c^{0} d$	
			$M_{\rm B} = \frac{(4.98 \times 10^{-8})^2 (7.0 \times 10^7 \times 10^3) (2.8 \times 10^{11})^2}{6.67 \times 10^{-11}}$	1
			$M_{\rm B} = 2.0 \times 10^{29} \rm kg$	1
6	(a)	(i)	Upthrust and Weight	1
		(ii)	At equilibrium, the magnitude of upthrust and weight are equal. When	1
		(,	the tube is pushed downwards, the magnitude of upthrust increases.	1
			upwards	•
	(b)		Since $\frac{A \rho g}{d r}$ is a constant, acceleration of the tube is proportional to its	
			displacement	1
			The negative sign indicates that acceleration and displacement are in the opposite direction	1
	(c)	(i)	Period of the oscillation = 2.2 s	
			Angular frequency = $2\pi/T$	
			$= 2\pi/2.2$	1

		= 2.9 rad s ⁻¹	
	(ii)	$\omega^2 = \frac{A \rho g}{M}$	
		$2.9^{2} = \frac{(4.5 \times 10^{-4}) \rho (9.81)}{(0.17)}$	1
		ρ = 323.86 = 320 kg m ⁻³	1
	(iii)	$v_0 = \omega x_0$	
		$v_0 = (2.9)(0.03)$	1
		= 0.087 m s ⁻¹	1

7	(a)	(i)	From definition, $V = \frac{W}{Q} \Rightarrow W = VQ$	1
		(ii)	From definition of work, $W = Fd$	1
	(b)	From we ha	VQ = Fd, ave ric field strength (force per unit charge) = $\frac{F}{Q} = \frac{V}{d}$ (potential gradient	1
		since	the potential changes linearly with distance between the plates)	-
	(c)	(i)	(82.4 – 82.0) × 10 ⁻³ × 9.81 = 3.9 × 10 ⁻³ N	1
		(ii)	 The current (flow) in the rod produces magnetic field around it which interacts with the permanent field of the U-shaped magnet. Due to the interaction, a downward force acts on the magnet while at the same time as a result of Newton's third law, an upward force acts on the rod. The rod is fixed but the magnet (or balance) is moveable and so this additional force is recorded. a correct reference to Fleming's LHR and Newton's 3rd Law Alternative: When a current flows in the rod placed in a B-field, a magnetic force is experienced by the rod [1] By N3L, an equal and opposite force is exerted on the magnet [1]	1
		(iii)	1.	

		40.0 cm	
		magnetic pole	
		current clamp magnetic pole	1
		The force on the U-shaped magnet is inwards (into the plane of the paper) and so the force on the rod must be outwards (out of the plane).	
		Based on Fleming's Left Hand Rule, the magnetic field is pointing vertically upwards.	
		 arrow from lower to upper magnetic pole or lower pole marked as the North pole / upper pole labelled South 	
	(iii)	2.	
		Uses <i>L</i> = 6.7 cm	
		Recall and correctly substitute in $F = BIL$	
		$I = \frac{F}{BL} = \frac{(3.9 \times 10^{-3})}{(28.6 \times 10^{-3})(6.7 \times 10^{-2})}$	1
		= 2.03 A	1
		3. With the current reversed, the forces are attractive (the magnet is partially supported by the magnetic force due to the current in the rod). Thus, the reading is reduced,	
		New reading = $(82.0 - 0.4) = 81.6$ g	1

8	(a)	The steady direct voltage value which provides the same power / energy dissipation as the alternating voltage.	1
	(b)	$ = [(4^2 \times 2) + (2^2 \times 4)] / 10$ = 4.8 $V_{\rm rms} = \sqrt{4.8}$	1
		= 2.19 = 2.2 V Mean power = $V_{\rm rms}^2/R$ = 2.19 ² / 25 = 0.192 W	1 1
	(c)	For a given power, higher voltage means lower current in cable. Lower current in cable will result in lower power lost in cable.	1 1

(d)	(i)	$V_s N_s$	
		$V_P N_P$	1
		$V_{\rm s}$ = 70 $ imes$ 15 = 1050 V	

		1m for correct shape 1m for correct angle for each cycle 1m for correct max intensity value	
(c)	(i)	$\sin \theta_1 = \lambda/d$ = (590 × 10 ⁻⁹)/(0.2 × 10 ⁻³) = 2.95 × 10 ⁻³ θ_1 = 2.95 × 10 ⁻³ rad	1
	(ii)	$ heta_2$ = 3 $ imes$ 2.95 $ imes$ 10 ⁻³ = 8.85 $ imes$ 10 ⁻³ rad	1
	(iii)	Width = $2 \times 2.95 \times 10^{-3} \times 0.75$ = 4.4 mm	1
	(iv)	For patterns to be just resolved, central maximum of one beam must lie on the first minimum of the other (Rayleigh's criteria) angle = 2.95×10^{-3} rad	1 1
(d)	(i)	$x = \frac{\lambda D}{a}$ $\lambda = \frac{ax}{D}$ $= \frac{(2.5 \times 10^{-3})(0.45 \times 10^{-3})}{1.83}$ = 6.15 × 10 ⁻⁷ m = 615 nm	1
	(ii)	Advantage: More light is able to pass through and thus the interference fringes will be brighter (more contrasting), and more easily observed. Disadvantage: The light passing through each slit diffracts (spread out) less, hence the interference pattern formed will cover a smaller area on the screen. In other words, there will be fewer interference fringes that can be observed.	1

10	(a)	(i)	The rate of decay is not dependent on physical conditions like temperature, pressure or chemical reactions	1
		(ii)	It is impossible to state exactly which nucleus or when a particular nucleus will disintegrate.	1
	(b)	(i)	$\Delta X / \Delta t$ (Refer to definition of activity)	1

	(ii)	ΔΧ/Χ	1
		(Number of nuclei that have decayed divided by total number of nuclei initially gives the probability of decay)	
	(iii)	$\left(\frac{\Delta X}{\Delta x}\right)$	1
		$\frac{X}{\Delta t}$	
		(Decay constant is the probability per unit time)	
(c)	(i)	$A \times (5.0 \times 10^{-4})$	
		$4\pi (0.400)^2$ = 250	1
		$A = 1.0 \times 10^{6} \text{ s}^{-1}$	1
	(ii)	135 s is equivalent to 3 half-lives	
		Thus, initial activity = $2^3(1.0 \times 10^6)$	1
		Using $A = \lambda N$,	
		The initial number of atoms = $2^{3}(1.0 \times 10^{6})/(0.693/45)$	1
		$= 5.2 \times 10^{8}$	
	(iii)	The result obtained is an over-estimation [1].	
		This is because there may be background radiation present [1].	
		Hence, the activity due to the source is less than that detected and thus the true initial number of atoms should be less [1].	
	(iv)	Since β -emissions comprises moving electrons, their path of travel can be deflected in a magnetic field.	1
(d)	(i)	A large or heavy unstable nucleus splits into two or more smaller nuclei.	1
		This process is brought about by neutron bombardment of the nucleus.	1
	(ii)	This process may release energy when the binding energy per nucleon increases after the process.	1
	(iii)	1.	1
		alinding energy per nucleon /MeV	
		When the binding energy per nucleon is low, it takes less energy to remove a nucleon from the nucleus.	1
	(iv)	Loss in energy = $3.1 \times 10^{-28} \times c^2 = 2.79 \times 10^{-11} \text{ J}$	1
		So, one uranium-235 nucleus disintegrates with the release of 2.79 \times 10 11 J of energy	
		Let <i>N</i> be the number of uranium-235 nuclei that release 100 GeV of	

	energy.	
	Then,	
	no. of nuclei required = 100 $ imes$ 10 9 $ imes$ 1.6 $ imes$ 10 $^{-19}$ / 2.79 $ imes$ 10 $^{-11}$ = 570	1