

СН

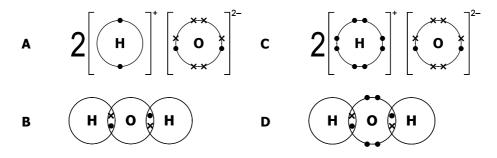
CHEMISTRY DEPARTMENT OF SCIENCE

(Bark	er Road)	Name:					()	Clase.	SEC 3	
A		dist Institution ded in 1886	Nume.					()	01033.	0100	
HE		AL BONDI	NG – ASS	IGNMEN	T							
Mu	ltiple	e-Choice Que	estions [20	<u>Marks]</u>				ТС	otal Sc	ORE		/ 30
Wr	ite ir	n your select	ted answer	for the mu	ultiple-choi	ice qu	lestion	s in the b	oxes pro	vided.		
1		2	3	4	5		6	7	8		9	10
1	1	12	13	14	15		16	17	18		19	20
L									L			
1.	Met	etals are defined as elements which										
	A B					C D						
								, 5	,			
2.	Two	Two non-metals can form a chemical bond										
	A	by delocalizing their valence electrons. by generating a magnetic attraction.			C							
	В	by generati	ng a magne	etic attraci	tion.	D	Dy tra	ansterring	j electroi	is to e	ach othe	er.
3.	Which of the following elements does not form an ion which has the same electronic configuration as an argon atom?											
	A	chlorine	В	phospho	orus	С	potas	sium	D	sodiu	ım	
4.	The	e element X	has an elec	tronic con	ifiguration	of 2,	8, 18,	6. What	ion will i	t form?)	
	A	X ²⁺	В	X ⁶⁺		С	X ²⁻		D	X ⁴⁻		
5.	Wh	len magnesit	um forms a	compound	d with oxy	gen,	each n	nagnesiur	n atom			
	A B	gives four electrons to oxygen. gives two electrons to oxygen.				C shares four electrons with oxygen.D shares two electrons with oxygen.						
	U	gives two e		oxygen.		U	511010			nui UX)	gen.	

- 6. The element **Y** is highly unreactive, and does not form any chemical bonds under normal circumstances. Which of the following is a possible electronic configuration of **Y**?
 - **A** 2 **B** 2, 2 **C** 2, 6 **D** 2, 8, 8, 2

- 7. A 'triple covalent bond' refers to the
 - **A** sharing of six electrons between a metal and a non-metal.
 - **B** sharing of six electrons between two non-metals.
 - **C** sharing of three electrons between two metals.
 - **D** sharing of three electrons between two non-metals.
- 8. Which of the following statements pertaining to compounds of calcium is true?
 - **A** Calcium atoms have a tendency to gain two electrons during bonding.
 - **B** Calcium bonds with other metallic atoms by sharing electrons.
 - **C** Calcium bonds with other non-metallic atoms by transferring electrons.
 - **D** Calcium can form simple molecules which have a low melting point.
- 9. A molecule of ammonia is shown below.

How many bonded electrons are there surrounding the nitrogen atom?


A 1 **B** 3 **C** 6 **D** 8

10. A molecule of sulfur trioxide is shown below.

How many <u>bonded</u> electrons are there surrounding the sulfur atom?

A 2 **B** 6 **C** 8 **D** 12

11. Which of the following best illustrates the bonding present in water?

12. Which of the following statements about ionic compounds is incorrect?

- A Ionic compounds are generally more soluble in water than covalent compounds.
- **B** Ionic compounds can conduct electricity at room temperature.
- **C** Ionic compounds form giant ionic lattices.
- **D** Ionic compounds have high boiling points.

- 13. Which pair of elements below is most likely to form a compound with a low melting point?
 - A calcium, silicon B carbon, hydrogen C fluorine, sodium D barium, zinc
- 14. An element **Q**, found in Group V of the periodic table, forms a compound with element **R**, found in Group VII of the periodic table. It hence can be deduced that the compound
 - **A** has a formula of Q_3R .
 - **B** has a low boiling point.

- **C** is soluble in water.
- **D** is able to conduct electricity when liquid.
- 15. A diagram illustrating the bonding in a molecule of XY_2 , showing only the valence electrons, is shown below. What could elements X and Y be?

	Element X	Element Y	
Α	oxygen	fluorine	
В	potassium	sulfur	•
С	sulfur	oxygen	(Y
D	sulfur	sodium	<u> </u>
			`•

16. Which substance in the table could be ethanol, CH₃CH₂OH?

	т.р. / °С	b.p. / °C	electrical conductivity
Α	- 114	- 85	good when liquid
В	- 114	78	none when liquid
С	580	718	none when liquid
D	808	1465	good when liquid

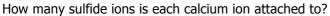
17. What are the forces that hold together a crystal of table salt (solid sodium chloride) and dry ice (solid carbon dioxide)?

	table salt	dry ice
Α	attraction of charged ions	covalent bonds
В	attraction of charged ions	intermolecular forces
С	covalent bonds	attraction of charged ions
D	covalent bonds	intermolecular forces

18. The table gives information about the ability of three substances to conduct electricity.

Substance	Property
-----------	----------

- X does not conduct under any conditions
- Y conducts in both molten and solid states
- Z conducts in both molten and aqueous states


What could these three substances be?

	Х	Y	Ζ
Α	NaCl	S	Pb
В	Pb	NaCl	S
С	S	NaCl	Pb
D	S	Pb	NaCl

- 19. A molten sample of zinc chloride is able to conduct electricity because
 - **A** it possesses a metallic element.
- **C** its ions are free to move.
- **B** it possesses mobile electrons.

- **D** its molecules are free to move.
 - eqend: calcium ion sulfide ion

20. The diagram below shows part of a crystal of calcium sulfide (CaS).

Structured Questions [10 Marks]

- 21. Explain, in terms of structure and bonding, why
 - (a) ionic compounds have higher boiling points than simple covalent compounds, [2] (b) ionic compounds can conduct electricity when molten, but not when solid. [2]
- 22. Scientists are studying a new element Ze. It does not conduct electricity, and is able to combine with other elements to make covalent and ionic compounds. It forms the ion Ze²⁻. Give three reasons why the element should be classified as a **non-metal**. [2]

- 23. Draw 'dot-and-cross' diagrams, showing only valence electrons, to illustrate the bonding in
 - (a) magnesium chloride (MgCl₂) [1]

(b) nitrogen gas (N₂)

(c) hydrogen sulfide (H₂S)

(d) lithium phosphide (Li₃P)

[1]

[1]

[1]

END