2024 H2 MATH (9758/01) JC 2 PRELIMINARY EXAMINATION – SUGGESTED SOLUTIONS

Qn	Solution				
1	Transformation of Curves				
(i)	$y = \frac{2x+1}{x-4} = \frac{2(x-4)+9}{x-4} = 2 + \frac{9}{x-4}$ where $a = 2$ and $b = 9$.				
(ii)	<u>Note</u>: For sequence of transformation questions, you MUST describe the transformations (using the keywords) and not just write the replacements				
	Template {delete as appropriate}:				
	Translate units in the {positive / negative} {x-direction / y-direction}				
	<i>x</i> -direction [Replace x by $x - (k)$] <i>y</i> -direction [Replace y by $y - (k)$]				
	 Sign of (k) determines positive / negative Magnitude of (k) determines no. of units of translation 				
	Stretch by a factor of <u>k</u> parallel to the {x-axis / y-axis}				
Parallel to the x-axisReplace x by $\frac{x}{k}$ Parallel to the y-axisReplace y by					
	• <i>k</i> is the stretch factor				
	Reflection in the {x-axis / y-axis}				
	In the y-axis [Replace x by $-x$]In the x-axis [Replace y by $-y$]				
	<u>Method 1</u> : Stretch parallel to y-axis $y = \frac{1}{x} \xrightarrow{(1)} y = \frac{1}{(x-4)} \xrightarrow{(2)} \left(\frac{y}{9}\right) = \frac{1}{x-4} \Rightarrow y = \frac{9}{x-4} \xrightarrow{(3)} y = 2 + \frac{9}{x-4}$ (1) Translate 4 units in the positive x-direction (2) Stretch by a factor of 9 parallel to the y-axis				
	Alternative: In the sequence (2), (3), (1) or (2), (1), (3) <u>Method 2</u> : Stretch parallel to x-axis $y = \frac{1}{x} \xrightarrow{(1)} y = \frac{1}{\left(\frac{x}{9}\right)} = \frac{9}{x} \xrightarrow{(2)} y = \frac{9}{\left(x-4\right)} \xrightarrow{(3)} \left(y-2\right) = \frac{9}{x-4} \Rightarrow y = 2 + \frac{9}{x-4}$				
	 (1) Stretch by a factor of 9 parallel to the <i>x</i>-axis (2) Translate 4 units in the positive <i>x</i>-direction (3) Translate 2 units in the positive <i>y</i>-direction 				
	Alternative: In the sequence (1), (3), (2) or (3), (1), (2)				

$$\frac{\text{Method 2: } 2^{\text{nd}} \text{ derivative test}}{\text{Differentiate w.r.t } h,}$$

$$\frac{d^2V}{dh^2} = -\frac{3\pi}{2}h$$

$$When h = \frac{2k}{\sqrt{3}}, \frac{d^2V}{dh^2} = -\frac{3\pi}{2}\left(\frac{2k}{\sqrt{3}}\right) = -\sqrt{3}\pi k < 0 \quad (\because k > 0)$$

$$\therefore V \text{ is maximum when } h = \frac{2k}{\sqrt{3}}.$$
For 2^{\text{nd}} derivative test, you need to
(1) find the second derivative, $\frac{d^2V}{dh^2}$
(2) explain clearly why it is < 0 for
the value of h
(3) conclude that the volume is
maximum

Qn	Solution		
4	Maclaurin Series		
(i)	Using cosine rule		
(1)	Formula NOT given in ME26:		
	Formula NOT given in MF20.		
	$2^{2} = r^{2} + r^{2} - 2r^{2} \cos \left \frac{\pi}{2} - \theta \right $ 1) Cosine Rule: $a^{2} = b^{2} + c^{2} - 2bc \cos A$		
	(3) (3) (3) (3) (3) (3) (3)		
	2) Sine Rule: $\frac{1}{1+r} = \frac{1}{r} = \frac{1}{r}$		
	$4 = 2r^2 - 2r^2 \cos\left(\frac{-\pi}{3} - \theta\right) \qquad \qquad$		
	$r^2 = \frac{4}{1}$		
	$(\pi - \alpha)$		
	$2\left(1-\cos\left(\frac{-\theta}{3}-\theta\right)\right)$		
	4		
	$-\frac{1}{2}\left(1-\frac{\pi}{2}\left(1-\frac{\pi}{2}\right)\right)$ Use MF26:		
	$2 1- \cos\frac{\pi}{2}\cos\theta + \sin\frac{\pi}{2}\sin\theta $ $\cos(A-B) = \cos A\cos B + \sin A\sin B$		
	4		
	$=$ $\frac{1}{\left(\left(1 - \sqrt{2} \right) \right)}$		
	$2\left 1-\left \frac{1}{2}\cos\theta+\frac{\sqrt{3}}{2}\sin\theta\right \right $		
	Λ		
	$=$ $\frac{4}{\sqrt{2}}$ (shown)		
	$2 - \sqrt{3}\sin\theta - \cos\theta$		
(ii)			
	$r = \frac{1}{2 - \sqrt{3} \sin \theta - \cos \theta}$ " θ is a sufficiently small angle" means		
	$2 - \sqrt{5} \sin \theta - \cos \theta$ use small angle approximation		
	$(\theta^3 \text{ and above can be neglected})$		
	$\approx \frac{1}{1}$ Use ME26:		
	$2 - \sqrt{3}\theta - \left(1 - \frac{1}{2}\theta^2\right) \qquad \qquad$		
	$\left(\begin{array}{c}2\\2\end{array}\right)$		
	$\cos\theta \approx 1 - \frac{\theta^2}{2}$		
	2		
	$-1 - \sqrt{2} \rho_1 + \frac{1}{2} \rho_2$		
	$\frac{1-\sqrt{3\theta+-\theta}}{2}$		
	Lise ME26:		
	$(1)^{\frac{1}{2}} ((1)^{\frac{1}{2}})^{\frac{1}{2}}$		
	$r \approx 2\left(1 - \sqrt{3}\theta + \frac{1}{2}\theta^2\right)^2 = 2\left(1 + \left(-\sqrt{3}\theta + \frac{1}{2}\theta^2\right)\right)^2$ $(1+x)^n = 1 + nx + \frac{n(n-1)}{2}x^2 +$		
	$\left(1 + \frac{1}{2}\right) = \left(1 + \left(1 + \frac{1}{2}\right)\right) = \left(1 + \left(1 + \frac{1}{2}\right)\right)$		
	(1)(3)		
	$\left \begin{array}{c} -\frac{1}{2} \\ -$		
	$ = 2 \left 1 + \left -\frac{1}{2} \right \left -\sqrt{3\theta} + \frac{1}{2\theta^2} \right + \frac{\sqrt{2}}{2} \left -\sqrt{3\theta} + \frac{1}{2\theta^2} \right + \dots \right $		
	$= 2 \left[1 + \frac{\sqrt{3}}{4} \theta - \frac{1}{2} \theta^2 + \frac{9}{2} \theta^2 + \frac{1}{2} \theta^2 + $		
	$\begin{bmatrix} -2 \\ 1 \\ 2 \\ 4 \\ 8 \end{bmatrix}$		
	$\left[-2\left(1+\frac{\sqrt{3}}{\sqrt{3}}\theta+\frac{7}{2}\theta^{2}+1\right)\right]$		
	$\begin{bmatrix} -2 \\ 1 \\ 2 \\ 8 \end{bmatrix}$		
	$ \approx 2+\sqrt{3}\theta+\frac{1}{2}\theta^2$		
	4		
	$a = \sqrt{3}$ and $b = 7$		
	$u - \sqrt{3}$ and $v = \frac{1}{4}$ Answer question		

OnSolution7Techniques of Differentiation(i)
$$y^2 = 3x^2 - x + 1$$
Differentiate w.r.t. x, $2y \frac{dy}{dx} = 9x^2 - 1$ $2y \frac{dy}{dx} = 9x^2 - 1$ Use implicit differentiationAt stationary point, $\frac{dy}{dx} = 0$ $9x^2 - 1 = 0$ $x = \frac{1}{3}$ or $-\frac{1}{3}$ Always give your answer in the simplest form! i.e. $\sqrt{9} = 3$ When $x = \frac{1}{3}$, $y = \frac{\sqrt{7}}{3}$ or $-\frac{\sqrt{7}}{3}$ Always give your answer in the simplest form! i.e. $\sqrt{9} = -\frac{\sqrt{7}}{3}$ When $x = -\frac{1}{3}$, $y = \frac{\sqrt{11}}{3}$ or $-\frac{\sqrt{11}}{3}$ Answer the question. Give the COORDINATES of the stationary points. You do NOT need to determine the nature of the stationary points.Stationary points are $(\frac{1}{3}, \frac{\sqrt{7}}{3}), (-\frac{1}{3}, \frac{\sqrt{11}}{3}), (-\frac{1}{3}, -\frac{\sqrt{11}}{3}), (\frac{1}{3}, -\frac{\sqrt{7}}{3}),$ (ii)The stationary point in the first quadrant is $S(\frac{1}{3}, \frac{\sqrt{7}}{3})$.Since the x-coordinate is increasing, $\frac{dx}{dt} = \frac{1}{9}$ $d(\frac{dy}{dx}) = d(\frac{dy}{dx}) \times \frac{dx}{dt} \Rightarrow \frac{d(\frac{dy}{dx})}{dt} = \frac{d^2y}{dx^2} \times \frac{dx}{dt}$ Differentiate w.r.t. x, $2(\frac{dy}{dx})^2 + 2y\frac{d^2y}{dx^2} = 18x$ Use implicit differentiation to find the 2^{tid} $(\frac{dy}{dx})^2 + y\frac{d^2y}{dx^2} = 9x$

At point
$$S\left(\frac{1}{3}, \frac{\sqrt{7}}{3}\right)$$
, $\frac{dy}{dx} = 0$, $\frac{dx}{dt} = \frac{1}{9}$
$$\frac{\sqrt{7}}{3}\frac{d^2y}{dx^2} = 9\left(\frac{1}{3}\right) \Rightarrow \frac{d^2y}{dx^2} = \frac{9}{\sqrt{7}}$$
$$\therefore \frac{d\left(\frac{dy}{dx}\right)}{dt} = \frac{9}{\sqrt{7}} \times \left(\frac{1}{9}\right) = \frac{1}{\sqrt{7}}$$
Hence the rate of change of its gradient at point *S* is $\frac{1}{\sqrt{7}}$ units per second.

Qn	Solution				
8	Vectors				
(i)	$\overrightarrow{OE} = \overrightarrow{OA} + \overrightarrow{AE} = \begin{pmatrix} 4\\3\\0 \end{pmatrix} + \begin{pmatrix} 0\\0\\20 \end{pmatrix} = \begin{pmatrix} 4\\3\\20 \end{pmatrix}$				
	Using Ratio Theorem,				
	$\overrightarrow{OF} = \frac{k\overrightarrow{OA} + (1-k)\overrightarrow{OE}}{k+(1-k)} = k \begin{pmatrix} 4\\3\\0 \end{pmatrix} + (1-k) \begin{pmatrix} 4\\3\\20 \end{pmatrix} = \begin{pmatrix} 4\\3\\20(1-k) \end{pmatrix}$				
	Since it is given that $AF : FE = 1 - k : k$, we can apply Ratio Theorem to find \overrightarrow{OF} .				
(ii)	$\overrightarrow{DC} = \overrightarrow{OB} = \begin{pmatrix} 0 \\ 6 \\ 0 \end{pmatrix} = 6 \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$ Find the two vectors parallel to the plane. Can use \overrightarrow{DC} , \overrightarrow{DF} or \overrightarrow{CF} $= \begin{pmatrix} 4 \\ 3 \\ 20(1-k) \end{pmatrix} - \begin{pmatrix} 0 \\ 0 \\ 20 \end{pmatrix}$ $= \begin{pmatrix} 4 \\ 3 \\ -20k \end{pmatrix}$				
	$n = \overrightarrow{DC} \times \overrightarrow{DF} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \times \begin{pmatrix} 4 \\ 3 \\ -20k \end{pmatrix} = \begin{pmatrix} -20k \\ 0 \\ -4 \end{pmatrix} = -4 \begin{pmatrix} 5k \\ 0 \\ 1 \end{pmatrix}$ Find the cross product of the two vectors parallel to the plane to find the normal vector				
	Equation of the plane <i>CDF</i> $\mathbf{r} \cdot \begin{pmatrix} 5k \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 20 \end{pmatrix} \cdot \begin{pmatrix} 5k \\ 0 \\ 1 \end{pmatrix} = 20$ (Shown) Use $\mathbf{r} \cdot \mathbf{n} = \mathbf{a} \cdot \mathbf{n}$ to find and show the equation of the plane. Any one of the points <i>C</i> , <i>D</i> , or <i>F</i> can be used.				

(ii) Let *N* be the foot of perpendicular from point *E* to the plane *CDF*.
Form the equation of the line passing through points *E* and *N*. Since
$$\overline{EN}$$
 is point \overline{E} and *N*. Since \overline{EN} is plane, the plane, we can use the normal vector of the plane to be the direction vector of the plane. The second plane is $COR = \begin{pmatrix} 4 \\ 3 \\ 20 \end{pmatrix} + \lambda \begin{pmatrix} 5k \\ 0 \\ 1 \end{pmatrix}$ for some $\lambda \in \mathbb{R}$
Since *N* lies on the plane, it satisfies the equation of the plane. Hence $\overline{ON} = \begin{pmatrix} 4 \\ 3 \\ 20 \end{pmatrix} + \lambda \begin{pmatrix} 5k \\ 0 \\ 1 \end{pmatrix}$ for some $\lambda \in \mathbb{R}$
Remark: Do not label the foot of perpendicular to the plane. Hence $\overline{ON} = \begin{pmatrix} 5k \\ 0 \\ 1 \end{pmatrix} = 20$.
Since *N* lies on the plane, it satisfies the equation of the plane. Hence $\overline{ON} = \begin{pmatrix} 5k \\ 0 \\ 1 \end{pmatrix} = 20$. Students should solve for the value of λ to find point *N*, not *k*.
The *x*-coordinate of *N* is $4 + \lambda(5k) = 4 + \frac{-20k}{(25k^2 + 1)}(5k) = 4 - \frac{100k^2}{(25k^2 + 1)} = \frac{4}{(25k^2 + 1)}$.
The *x*-coordinate of $N = 4 - \frac{100k^2}{(25k^2 + 1)} = \frac{4}{(25k^2 + 1)}$.

Alternatively,

$$\overrightarrow{OE}' = 2\overrightarrow{ON} - \overrightarrow{OE} = 2 \begin{pmatrix} \frac{4}{(25k^2 + 1)} \\ 3 \\ 20 - \frac{20k}{(25k^2 + 1)} \end{pmatrix} - \begin{pmatrix} 4 \\ 3 \\ 20 \end{pmatrix} = \begin{pmatrix} \frac{8}{(25k^2 + 1)} - 4 \\ 3 \\ 20 - \frac{40k}{(25k^2 + 1)} \end{pmatrix}$$

x-coordinate of $E' = \frac{8}{(25k^2 + 1)} - 4$
For the reflection of the plane *CDE* in the plane *CDF* to lie on the plane *OBCD*, *E'* has to be a point on the plane *OBCD*.
Therefore, x-coordinate of $E' = 0$

$$\frac{8}{(25k^2 + 1)} - 4 = 0$$

$$\frac{8}{(25k^2 + 1)} - 4 = 0$$

$$\frac{8}{(25k^2 + 1)} = 4$$

$$8 = 100k^2 + 4$$

$$100k^2 = 4$$

$$k^2 = \frac{1}{25}$$

$$k = \pm \frac{1}{5}$$

Since $0 < k < 1, k = \frac{1}{5}$

Qn	Solution			
9	Functions + Inequalities			
(i)	For f^{-1} to exist, f must be one-one function.			
	Least value of $k = 2$.			
(;;)				
(11)	Y x = 2	The graphs of $y = f(x)$, $y = f^{-1}(x)$ and		
	y = x	v = x must intersect at the same point		
		The asymptotes $y = 2$ and $x = 2$ must		
		intersect at the line $v = x$		
		The asymptotes $y = 0$ and $r = 0$ must		
	$y = \mathbf{f}^{-1}(\mathbf{x})$	intersect at the line $y = r$		
		The sect at the line $y - x$.		
	y = 2			
	$\mathbf{r} = 0$ $\mathbf{v} = \mathbf{f}(\mathbf{r})$	The graphs of $y = f(x)$ and $y = f^{-1}(x)$		
	x = 0 $y = 1(x)$	must be a reflection of each other in the		
	y = 0 x	line $y = x$.		
	$y = f(x) = \frac{1}{(x-x)^2}$ has asymptotes $y = 0$ and $x = 2$,			
	$(x-2)^2$			
	so $y = f^{-1}(x)$ will have asymptotes $x = 0$ and $y =$	2.		
(iii)	Let $f^{-1}(5) = x$. First we can compose the	a function f on both sides of the		
	$ff^{-1}(5) = f(x)$ equation $f^{-1}(5) = x$	e function f on both sides of the		
	I $(x) = 5$ And since $ff^{-1}(5) = 5$ we do not need to find the expression			
	$\frac{1}{(-2)^2} = 5$ And since if $(5) = 5$, we do not need to find the expression			
	$(x-2)^2$ of f ⁻¹ .			
	$(x-2)^2 = \frac{1}{2}$			
	$x-2 = \frac{1}{\sqrt{5}} \qquad (\because x > 2)$			
	1			
	$x = 2 + \frac{1}{\sqrt{5}}$			
	./5			
	$=2+\frac{\sqrt{3}}{5}$			
	5			

	Alternatively, you may find the expression of f^{-1} .				
	Let $y = \frac{1}{\left(x-2\right)^2}$				
	$\left(x-2\right)^2 = \frac{1}{y}$				
	$x - 2 = \pm \frac{1}{\sqrt{y}}$				
	since $x > 2$,				
	$x = 2 + \frac{1}{\sqrt{y}}$				
	$\therefore f^{-1}(x) = 2 + \frac{1}{\sqrt{x}}$				
	$f^{-1}(5) = 2 + \frac{1}{\sqrt{5}}$				
	$=2+\frac{\sqrt{5}}{5}$				
(iv)	$\mathbf{R}_{\mathbf{f}^{-1}} = \mathbf{D}_{\mathbf{f}} = (2, \infty) \text{ and } \mathbf{D}_{\mathbf{g}} = (0, \infty)$				
	Since $R_{f^{-1}} \subseteq D_g$, gf^{-1} exists.				
	Using mapping method,				
	↓ <i>y</i>				
	$\begin{array}{c c} \hline O \\ \hline \hline \hline O \\ \hline \hline O \\ \hline \hline \hline O \\ \hline \hline \hline \hline$				
	$y = g(x)$ with restricted domain $(2,\infty)$				
	$D_{f^{-1}} = R_f = (0, \infty) \xrightarrow{f^{-1}} R_{f^{-1}} = (2, \infty) \xrightarrow{g} R_{gf^{-1}} = \left(-\infty, -\frac{7}{2}\sqrt{2}\right)$				
	Using $R_{f^{-1}} = (2, \infty)$ as the restricted domain on the graph of g,				
	we subst when $x = 2$ into $g(x) = \frac{1}{\sqrt{x}} - 4\sqrt{x}$, we will get				
	$g(2) = \frac{1}{\sqrt{2}} - 4\sqrt{2} = \frac{\sqrt{2}}{2} - 4\sqrt{2} = \sqrt{2}\left(\frac{1}{2} - 4\right) = -\frac{7\sqrt{2}}{2}$				
	$\mathbf{R}_{\mathrm{gf}^{-1}} = \left(-\infty, -\frac{7}{2}\sqrt{2}\right)$				

Page 17 of 21

Qn	Solution				
10	Differential Equations				
(i)	$\frac{\mathrm{d}V}{\mathrm{d}t} = 50 - kV , k > 0$				
(ii)	$\int \frac{1}{50 - kV} \mathrm{d}V = \int 1 \mathrm{d}t$	Use the variable LHS is in terms	s separable method to ensure of V, and the RHS is in terms of <i>t</i>		
	$\left -\frac{1}{k} \ln \left 50 - kV \right = t + c$	Remember the modulus sign, and the golden rule			
	$\ln 50-kV = -kt - kc$		2		
	$50 - kV = Ae^{-kt}$, where $A = \pm e^{-kc}$				
	$kV = 50 - Ae^{-kt}$				
	$V = \frac{50}{k} - \frac{A}{k} e^{-kt} = \frac{50}{k} - B e^{-kt} , B = \frac{A}{k}$				
(iii)	When $t = 0$, $V = 100 \implies 100 = \frac{50}{l_r}$	-B(1)	Initially, the volume of water in		
	^{<i>K</i>} 50		the tank is 100 cm ³		
	When $t = 1$, $V = 130 \implies 130 = \frac{30}{k}$	$-Be^{-\kappa}$ (2)	→ When $t = 0$, $V = 100$		
	(2) – (1): $30 = -Be^{-k} + B$		After a minute, the volume		
	$B = \frac{30}{1 - e^{-k}}$		increased to 130 cm ³		
	1 - e		$\Rightarrow \text{ When } t = 1, V = 130$		
	$\frac{1}{k} - \frac{1}{1 - e^{-k}}$				
	Using GC, $k = 0.17326$ Normal float auto real renormal float auto real ra	DIAN MP 👩 NORMAL FLOA	IT AUTO REAL RADIAN MP		
	NORMAL FLOAT AUTO REAL RADIAN HP NORMAL FLOAT AUTO REAL RADIAN HP Plot1 Plot2 Plot3 NY1B100 WINDOW Xmin=0 Xmax=10 Xscl=1 Ya= Yscl=1 Yscl=1 Xres=1 aX=0.0378787878787878787878787878787878787878				
	$B = \left(\frac{30}{1 - e^{-0.17326}}\right) = 188.58$	his is a SHOW q	uestion, please show all working		
	$V = \frac{50}{18858e^{-0.17326t}}$ c	learly. Intermedia	te answers should be given in at		
	$V = \frac{1}{0.17326} - 130.366$	east 5 s.f.			
	$= 288.58 - 188.58e^{-0.173207} \qquad \square$				
	$= 289 - 189e^{-0.173t} (3 \text{ s.f.}) (\text{shown})$				
(iv)	At 95% capacity, $V = 0.95(300) =$	285			
	$285 = 289 - 189e^{-0.173t}$				
	Using GC, $t = 22.3$ (3 s.f.)				
	It will take about 22.3 minutes (or 22 minutes and 18 seconds) to reach 95% of the capacity.				
	Alternatively, $285 = 288.58 - 188.58e^{-0.17326t}$				
	Using GC, $t = 22.9$ (3 s.f.)				
	It will take about 22.9 minutes (or 2 capacity.	22 minutes and 54	seconds) to reach 95% of the		

$$=8 \ln 3 - \left[\frac{t^{2}}{2} + t - \ln |t + 1|\right]_{0}^{2} + \frac{(\ln 3)^{2}}{36}$$

$$=8 \ln 3 - \left[(4 - \ln 3) - 0\right] + \frac{(\ln 3)^{2}}{36}$$

$$= \frac{1}{36} (\ln 3)^{2} + 9 \ln 3 - 4$$

$$a = \frac{1}{36}$$

$$b = 9$$

$$c = -4$$
Method 2: Using y-axis
$$x = -1 \ln 3 - \frac{y}{4}$$
(0, 0)
$$8 \ln 3 + 8$$
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0, 0)
(0,