

Solutions for 2012 H2 Maths Prelim 2 Paper 2

IJC/2012/8864/BT/Marking Scheme

2(ii)	Area = $\frac{1}{2}\left(2\sqrt{2}\right)\left(\frac{1}{4\sqrt{2}}\right) + \int_{2\sqrt{2}}^{4} \frac{1}{x\sqrt{x^2 - 4}} dx$ = $\frac{1}{4} + \frac{\pi}{24}$ unit ²
3(i)	$n \to \infty, x_n \to l, x_{n+1} \to l.$ $l = \sqrt{10 - 3l}$ $l^2 = 10 - 3l$ $l^2 + 3l - 10 = 0$ $(l - 2)(l + 5) = 0$ Solving, $l = 2 \text{or} l = -5 \text{ (rejected)}$
3(ii)	$(x_{n+1})^2 - l^2 = 10 - 3x_n - 2^2$ = 6 - 3x_n = 3(l - x_n)
3(iii)	Since $x_n < l$ $l - x_n > 0$ $(x_{n+1})^2 - l^2 = 3(l - x_n)$ $(x_{n+1})^2 - l^2 > 0$ $(x_{n+1} - l)(x_{n+1} + l) > 0$ $(x_{n+1} - l) > 0$ (since $x_{n+1} + l > 0$) $x_{n+1} > l$

Volume of cone $V = \frac{1}{3}\pi r^2 h$, where
$r = 2\theta$ and $h = \sqrt{16\pi^2 - 4\theta^2}$.
$V = \frac{1}{3}\pi (2\theta)^2 \sqrt{16\pi^2 - 4\theta^2}$
$V = \frac{4}{3}\pi\sqrt{\theta^4}\sqrt{4}\sqrt{4\pi^2 - \theta^2}$
$V = \frac{8}{3}\pi\sqrt{4\pi^2\theta^4 - \theta^6}$
Differentiating with respect to θ ,
$\frac{\mathrm{d}V}{\mathrm{d}\theta} = \left(\frac{8}{3}\pi\right) \left(\frac{1}{2}\right) \left(4\pi^2\theta^4 - \theta^6\right)^{-\frac{1}{2}} \left(16\pi^2\theta^3 - 6\theta^5\right)$
When $\frac{\mathrm{d}V}{\mathrm{d}\theta} = 0$,
$16\pi^2\theta^3 - 6\theta^5 = 0$
$\theta^3 \left(16\pi^2 - 6\theta^2 \right) = 0$
$16\pi^2 = 6\theta^2$
$\theta^2 = \frac{8\pi^2}{3}$
$V = \frac{8}{3}\pi \sqrt{4\pi^2 \left(\frac{8\pi^2}{3}\right)^2 - \left(\frac{8\pi^2}{3}\right)^3}$
$V = \frac{8}{3}\pi \sqrt{\frac{256\pi^6}{9} - \frac{512\pi^6}{27}}$
$V = \frac{8}{3}\pi^4 \sqrt{\frac{256}{27}}$
$V = \frac{128}{9\sqrt{3}}\pi^4$
$V = \frac{128\sqrt{3}}{27}\pi^4$
p = 128, $q = 27$
$\theta \qquad \sqrt{\frac{8\pi^2}{3}} \qquad \sqrt{\frac{8\pi^2}{3}} \qquad \sqrt{\frac{8\pi^2}{3}}$
gradient + ve 0 - ve
Shape / _ \
Therefore <i>V</i> is a maximum when $\theta = \sqrt{\frac{8\pi^2}{3}}$ (verified).

IJC/2012/9740/02/Prelim 2/Solutions

$$\overline{DB} = \begin{pmatrix} 12\\ 8\\ 0 \end{pmatrix}, \overline{OD} = \begin{pmatrix} 0\\ 4\\ 7 \end{pmatrix}, \overline{DB} = \begin{pmatrix} 12\\ 4\\ -7 \end{pmatrix}$$
Equation of line DB: $r = \begin{pmatrix} 12\\ 8\\ 0 \end{pmatrix} + \lambda \begin{pmatrix} 12\\ 4\\ -7 \end{pmatrix}$

$$\overline{OE} = \begin{pmatrix} 12\\ 4\\ 5 \end{pmatrix}$$
Let N be the foot of perpendicular from E to line DB.
$$\overline{ON} = \begin{pmatrix} 12 + 12k\\ 8 + 4k\\ -7k \end{pmatrix}, \overline{EN} = \begin{pmatrix} 12k\\ 4 + 4k\\ -5 - 7k \end{pmatrix}$$

$$\overline{EN} d = 0$$

$$\begin{pmatrix} 12k\\ 4 + 4k\\ -5 - 7k \end{pmatrix}, \frac{12}{-7} = 0$$

$$144k + 16 + 16k + 35 + 49k = 0$$

$$k = -\frac{51}{209}$$

$$\overline{ON} = \frac{1}{209} \begin{pmatrix} 1896\\ 1468\\ 357 \end{pmatrix}$$
The foot of perpendicular from E to DB is $\begin{pmatrix} 1896\\ 1209\\ 120$

	Let $ heta$ be the angle between DB and OBE.
	$\theta = \sin^{-1} \left(\frac{\begin{vmatrix} 12 \\ 4 \\ -7 \end{vmatrix}, \begin{vmatrix} -10 \\ 15 \\ 12 \end{vmatrix}}{\sqrt{209}\sqrt{469}} \right) = \sin^{-1} \left(\frac{144}{\sqrt{209}\sqrt{469}} \right) = 27.4^{\circ}$
(iii)	$\overrightarrow{DE} = \begin{pmatrix} 12\\0\\-2 \end{pmatrix}, \overrightarrow{DB} = \begin{pmatrix} 12\\4\\-7 \end{pmatrix}$
	Length of projection
	$=\frac{\begin{pmatrix}12\\0\\-2\end{pmatrix}\begin{pmatrix}12\\4\\-7\end{pmatrix}}{\sqrt{209}} = \frac{158}{\sqrt{209}} = 10.929 = 10.9 \text{ units}$ As <i>DB</i> and <i>AC</i> are skew lines, they are not co-planar.
(iv)	As DB and AC are skew lines, they are not co-planar.

6(i)	Obtain a list of households according to the addresses. Select one household at random from the first 10 households on the list. Thereafter select every 10 th household on the list.
(ii)	Stratified Sampling
	Obtain a list of all households and divide the households according to the different
	types of housing. Select a random sample from each type of housing such that the sample size is proportional to the relative size of each type of housing.
	One advantage is that the sample obtained is a better representative of the population than systematic sampling.
	Quota Sampling
	Divide the households according to the different types of housing and set a quota for
	each type of housing. The interviewer interviews the households such that the quota is
	met.
	One advantage is that no sampling frame is needed.

7 Let *X* be the number of sixes obtained out of 25 throws of the biased die. Then $X \sim B(25, p)$. Given that std. dev. of X is 1.5. So, $Var(X) = 1.5^2$. $\therefore 25 p(1-p) = 1.5^2$ $\Rightarrow p - p^2 = 0.09 \Rightarrow p^2 - p + 0.09 = 0$ From GC, $p = \frac{1}{10}$ or $\frac{9}{10}$ Since $p < \frac{1}{6}$, $\therefore p = \frac{1}{10}$ (shown) Hence $X \sim B\left(25, \frac{1}{10}\right)$. Required probability = $P(6 \le X < 10) = P(X \le 9) - P(X \le 5)$ $\approx 0.033321 = 0.0333$ (3 s.f.) Let *Y* be the number of sixes obtained out of 40 throws of the biased die. $Y \sim \mathbf{B}\left(40, \frac{1}{10}\right).$ From GC, P(X = 3) = 0.20032P(X = 4) = 0.20589P(X = 5) = 0.16471Hence, most likely number of sixes obtained is 4.

8(a)(i)	Let <i>X</i> be the number of genuine call-outs in a 2-week period.
	Then $X \sim Po(4)$.
	$P(X < 6) = P(X \le 5) = 0.785$ (3 s.f.)
(ii)	Let <i>T</i> be the total number of call-outs in a 6-week period.
	Then $T \sim Po(6(2+0.5))$, i.e., $T \sim Po(15)$.
	Since $\lambda = 15$ (> 10), $T \sim N(15, 15)$ approximately.
	P(T > 19) = P(T > 19.5) (with continuity correction)
	$\approx 0.12264 = 0.123 (3 \text{ s.f.})$

8(b) Let W be the no. of genuine call-outs in a week at station B. $W \sim Po(m)$. $P(W \le 1) = 0.08$ $\Rightarrow P(W = 0) + P(W = 1) = 0.08$ $\Rightarrow e^{-m} + me^{-m} = 0.08$ $\Rightarrow e^{-m}(1+m) = 0.08$ From GC, m = 4.17 (3 s.f.)

9(i) Unbiased estimate of population mean,

$$\overline{x} = \frac{\sum (x-12)}{13} + 12$$

$$= \frac{6.09}{13} + 12$$

$$= 12.4685$$

$$= 12.5 (3 \text{ s.f.})$$
Unbiased estimate of population variance,

$$s^{2} = \frac{1}{12} \left(20.853 - \frac{6.09^{2}}{13} \right)$$

$$= 1.50 (3 \text{ s.f.})$$
9(ii) $H_{0}: \mu = \mu_{0}$
 $H_{1}: \mu > \mu_{0}$
Significance level: 5%
Under $H_{0}, T = \frac{\overline{X} - \mu_{0}}{S} \sim t_{(12)}$
 $\sqrt{\pi}$
From GC, $P(T < 1.7823) = 0.95$
If H_{0} is not rejected,

$$\Rightarrow \frac{12.4685 - \mu_{0}}{\sqrt{\frac{1.50}{13}}} < 1.7823$$
 $to transform (12)$
 (12)
 $to transform (12)$
 $to transform (13)$
 $to transform (12)$
 $to transform (13)$
 $to transform (12)$
 to

9(iii)	$H_0: \mu = 12$
	$H_0: \mu = 12$ $H_1: \mu > 12$
	Significance level: $\alpha\%$
	From GC, p -value = 0.09649
	Significant evidence that the modified petrol does improve mileage in cars \Rightarrow reject H_0
	$\Rightarrow p \text{-value} \le \frac{\alpha}{100}$
	$\Rightarrow \alpha \ge 9.649$
	Thus least significance level = 9.65% (3 s.f.)
	Assumption: X is normally distributed.
	OR The mileage of the particular model of car is normally distributed.

10(i)	P(exactly two girls are chosen)
	15 14 10 9 4!
	$= \frac{15}{25} \times \frac{14}{24} \times \frac{10}{23} \times \frac{9}{22} \times \frac{4!}{2!2!}$
	$=\frac{189}{506} (\text{or } 0.373518 \approx 0.374)$
	<u>Alt</u> P(exactly two girls are chosen)
	$= \frac{{}^{15}C_2 {}^{10}C_2 \times 4!}{{}^{25}C_4 \times 4!} = \frac{189}{506} (\text{or } 0.373518 \approx 0.374)$
10(ii)	P(Chairperson and Vice-Chairperson are of opposite sex)
10(11)	$= \frac{15}{25} \times \frac{10}{24} \times 2$
	= 0.5
	Alt
	P(Chairperson and Vice-Chairperson are of opposite sex)
	$=\frac{{}^{15}C_{1}{}^{10}C_{1}{}^{23}C_{2} \times 2! \times 2}{{}^{25}C_{4} \times 4!}$
	т
10(iii)	= 0.5 Reqd prob
	P(boy, boy, boy, girl) + P(boy, boy, girl, boy)
	$= \frac{1(00y, 00y, 00y, gm) + 1(00y, 00y, gm, 00y)}{P(\text{treasurer and sec are of opp sex})}$
	r(ueasurer and sec are of opp sex)

$$P(boy, boy, boy, girl) + P(boy, boy, girl, boy)$$

$$= \frac{10}{25} \times \frac{9}{24} \times \frac{8}{23} \times \frac{15}{22} \times 2$$

$$= \frac{18}{253} \text{ or } 0.071146$$

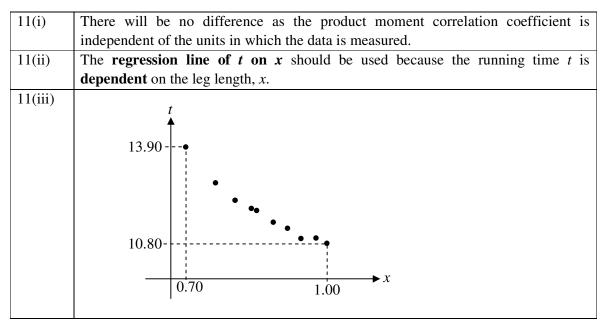
$$\frac{Alt}{P(boy, boy, boy, girl) + P(boy, boy, girl, boy)}$$

$$= \frac{{}^{10}C_3 {}^{15}C_1 \times 3! \times 2}{{}^{25}C_4 \times 4!}$$

$$= \frac{18}{253} \text{ or } 0.071146$$

$$Reqd \text{ prob} = \frac{\left(\frac{18}{253}\right)}{0.5} \text{ or } \frac{0.071146}{0.5}$$

$$= \frac{36}{253} \text{ or } 0.142292 \approx 0.142$$
10
Let *A* be the event 'Chairperson and Vice-Chairperson are both boys', and *B* be the event 'Treasurer and Secretary are of opposite sex'.
$$P(A) = \frac{10}{25} \times \frac{9}{24} = 0.15 \text{ OR } \frac{{}^{10}C_2 {}^{23}C_2 \times 2! \times 2!}{{}^{25}C_4 \times 4!} = 0.15$$
From (iii), $P(A|B) = \frac{36}{253}$ (or 0.142)
Since $P(A|B) \neq P(A)$, the events *A* and *B* are not independent.



IJC/2012/9740/02/Prelim 2/Solutions

11(iv)	Yes . Aaron has reason to disagree because the scatter diagram suggests that t and x has a curvilinear relationship rather than a linear one.
11(v)(a)	Product moment correlation coefficient between t and $\frac{1}{x^2}$ is 0.992 (3 s.f.)
	The new model is a better model because $ 0.992 $ is closer to 1 than
	-0.963 = 0.963.
11(v)(b)	Regression line is
	$t = 7.8603 + 2.8616 \frac{1}{x^2}$
	$t = 7.86 + 2.86 \frac{1}{x^2}$ (3 s.f.)
	When $t = 10$,
	$10 = 7.8603 + 2.8616 \frac{1}{x^2}$
	$x^2 = \frac{2.8616}{2.1397}$
	x = 1.16 (to 2 dec places) since $x > 0$
	Thus minimum length of leg required is 1.16m .
	This estimate may not be reliable as $t = 10$ is outside the sample data range for t .
	OR Extrapolated values are unreliable.

12 Let X cm³ and Y cm³ be the volume of glass and wood in a paperweight
respectively.
Then X ~ N(56.5, 2.9²), Y ~ N(38.4,
$$\sigma^2$$
).
 \therefore X + Y ~ N(94.9, 2.9² + σ^2)
P(X + Y > 100) = 0.05
 \Rightarrow P(X + Y ≤ 100) = 0.95
 \Rightarrow P($Z \leq \frac{100 - 94.9}{\sqrt{2.9^2 + \sigma^2}}$) = 0.95
 $\Rightarrow \frac{5.1}{\sqrt{2.9^2 + \sigma^2}}$ = 1.6449
 $\Rightarrow 2.9^2 + \sigma^2 = \left(\frac{5.1}{1.6449}\right)^2$
 $\Rightarrow \sigma = \sqrt{1.20305} = 1.09684$
= 1.10 (to 3 s.f.)

12(i)	Sample mean volume of glass for 20 paperweights,
	$\overline{X} = \frac{X_1 + X_2 + \dots + X_{20}}{20} \sim N\left(56.5, \frac{2.9^2}{20}\right)$
	$P(\overline{X} < 57.1) = 0.823 \ (3 \text{ s.f.})$
(ii)	$Y_1 - Y_2 \sim N(0, 2.42)$
	$P(Y_1 - Y_2 \ge 0.07)$
	$= P(Y_1 - Y_2 \le -0.07 \text{ or } Y_1 - Y_2 \ge 0.07)$
	$= P(Y_1 - Y_2 \le -0.07) + P(Y_1 - Y_2 \ge 0.07)$
	= 0.964 (3 s.f.)
(iii)	Let <i>W</i> grams be the weight of a paperweight.
	Then $W = 3.1X + 0.8Y$
	E(W) = (3.1)(56.5) + 0.8(38.4) = 205.87
	$Var(W) = 3.1^{2}(2.9^{2}) + 0.8^{2}(1.10^{2}) = 81.5945$
	Then <i>W</i> ~ N(205.87, 81.5945)
	P(200 < W < 220) = 0.683 (3 s.f.)