Algorithmic Complexity




Today

* Measuring orders of growth of algorithms
= Big “Oh” notation

= Complexity classes



WANT TO UNDERSTAND
EFFICIENCY OF PROGRAMS

= computers are fast and getting faster —so maybe efficient
programs don’t matter?

but data sets can be very large (e.g., in 2014, Google served
30,000,000,000,000 pages, covering 100,000,000 GB — how long to
search brute force?)

> thus, simple solutions may simply not scale with size in acceptable
manner

" how can we decide which option for program is most efficient?

" separate time and space efficiency of a program

® tradeoff between them:

° can sometimes pre-compute results are stored; then use “lookup” to
retrieve (e.g., memoization for Fibonacci)

> will focus on time efficiency



WANT TO UNDERSTAND
cFFICIENCY OF PROGRAMS

Challenges in understanding efficiency of solution to a
computational problem:

= 3 program can be implemented in many different
ways

= you can solve a problem using only a handful of
different algorithms

= would like to separate choices of implementation
from choices of more abstract algorithm



HOW TO eVALUATE
cFFICIENCY OF PROGRAMS

" measure with a timer

" count the operations

5l abstract notion of order of growth




TIMING A PROGRAM

*" use time module

" recall that tmport time

Importing means to
bring in that class
into your own file

def ¢ to f(c):
return c*9/5 + 32

= start clock —t0 = time.clock()
-~ Cc to £(100000)
tl = time.clock() - tO
// .
.StDpC|DCk Prlnt(”t =|1\‘r t’f ”:”; tl, ”Sr")

= call function



TIMING PROGRAMS IS
INCONSISTENT

= GOAL: to evaluate different algorithms

" running time varies between algorithms v
* running time varies between implementations ¥

" running time varies between computers X

" running time is not predictable based on small X

X

Inputs

" time varies for different inputs but
cannot really express a relationship
between inputs and time




COUNTING OPERATIONS

= assume these steps take def c_to_f(c):
constant time: return|c*9.0/5 + 32

. . S
* mathematical operations 2 OF

def mysum(x):
total

* comparisons

o\

. assignments > ‘ for |1 in range K+l}:

* accessing objects in memory ‘*‘?’D@eﬁ: A OF
2™ return total

of°
* then count the number of +

operations executed as
function of size of input

mysum 2 1+3x ops



COUNTING OPERATIONS IS
BETTER, BUT STILL...

= GOAL: to evaluate different algorithms

= count depends on algorithm v
" count depends on implementations X
= count independent of computers v

= no clear definition of which operations to count €

v

= count varies for different inputs and
can come up with a relationship
between inputs and the count




STILL NEED A BET TER WAY

* timing and counting evaluate implementations

* timing evaluates machines

* want to evaluate algorithm
* want to evaluate scalability

* want to evaluate in terms of input size



SITILL NEED A BET TER WAY

" Going to focus on idea of counting operations in an
algorithm, but not worry about small variations in

implementation (e.g., whether we take 3 or 4 primitive
operations to execute the steps of a loop)

= Going to focus on how algorithm performs when size
of problem gets arbitrarily large

= Want to relate time needed to complete a
computation, measured this way, against the size of
the input to the problem

" Need to decide what to measure, given that actual
number of steps may depend on specifics of trial



’\l_

D TO CHOOS

JS

- 10 EVALUAT

W
Ak

|CH

NPUT TO

JNC

|ON

= want to express efficiency in terms of size of input, so

neec

" Ccou

d be an integer

--mysum (x)

" could be length of list

-1

1st sum (L)

to decide what your input is

= you decide when multiple parameters to a function
--search for elmt (L, e)



DIFFERENT INPUTS CHANGE
HOW THE PROGRAM RUNS

= 3 function that searches for an elementin a list
def search for elmt(L, e):
for 1 in L:
1f 1 == e:
return True
return False

= when e is first element in the list 2 BEST CASE
= when e is not in list 2 WORST CASE

= when look through about half of the elements in
list 2 AVERAGE CASE

= want to measure this behavior in a general way



BEST, AVERAGE, WORST CASES

" suppose you are given a list L. of some length 1en (L)

" best case: minimum running time over all possible inputs
of a given size, 1en (L)

* constant for search for elmt
» first element in any list

" gverage case: average running time over all possible inputs@\ °
. . e
of a given size, 1en (L) RENRCE
» practical measure

" worst case: maximum running time over all possible inputs
of a given size, 1en (L)

* Tinearinlength of listfor search for elmt
* must search entire list and not find it



ORDERS OF GROWIH

Goals:

" want to evaluate program’s efficiency when input is very big

" want to express the growth of program’s run time as input
size grows

" want to put an upper bound on growth — as tight as possible
" do not need to be precise: “order of” not “exact” growth

= we will look at largest factors in run time (which section of
the program will take the longest to run?)

" thus, generally we want tight upper bound on growth, as
function of size of input, in worst case



stretch . ..



MEASURING ORDER OF
GROWTH: BIG OH NOTATION

= Big Oh notation measures an upper bound on the
asymptotic growth, often called order of growth

= Big Oh or Of) is used to describe worst case

* worst case occurs often and is the bottleneck when a
program runs

* express rate of growth of program relative to the input
size
* evaluate algorithm NOT machine or implementation



EXACT STEPS vs O()

def fact iter(n):

""rassumes n an int >= Q""" é*{“
answer = 1 ﬁﬁﬁ
while n > 1: ‘Ngﬁ;
answer *= n 2 A
n —= 1 'Q::“
return answer ﬁﬁﬁﬁﬁ@
: N
" computes factorial
N
X

= number of steps: 4"

= worst case asymptotic complexity: o
* ignore additive constants

* ignore multiplicative constants



WHAT DOES O(N) MEASURE?

" Interested in describing how amount of time needed
grows as size of (input to) problem grows

" Thus, given an expression for the number of
operations needed to compute an algorithm, want to
know asymptotic behavior as size of problem gets large

" Hence, will focus on term that grows most rapidly in a
sum of terms

= And will ignore multiplicative constants, since want to
know how rapidly time required increases as increase
size of input



SIMPLIFICATION EXAMPLES

" drop constants and multiplicative factors

" focus on dominant terms

o) : n< + 2n + 2
o : n* + 100000n + 31000
o : log(n) + n + 4
ontogn : 0.0001*n*log(n) + 300n

o3 : 2n3Y + 30



TYPES OF ORDERS OF
GROWITH




ANALYZING PROGRAMS AND
THEIR COMPLEXITY

= combine complexity classes
* analyze statements inside functions

* apply some rules, focus on dominant term

Law of Addition for O():
* used with sequential statements

* O(f(n)) + O(g(n)) is O(f(n) + g(n) )
* for example,

for i in range(n): - !
int (" g! { ) O\{\\ *x O\ﬂi
print('a') - 0\0\
for j in range(n*n): N
o

print('b"') —
is O(n) + O(n*n) = O(n+n?) = O(n?) because of dominant term



ANALYZING PROGRAMS AND
THEIR COMPLEXITY

= combine complexity classes
* analyze statements inside functions

* apply some rules, focus on dominant term

Law of Multiplication for O():
* used with nested statements/loops
* O(f(n)) * O(g(n)) is O(f(n) * g(n) )
« for example, o\
for i in range(n): \GD? ?u\(\\
for j J:_n range(n): } O\ﬂ\ }%@*0
print('a')

is O(n)*0O(n) = O(n*n) = O(n?) because the outer loop goes n
times and the inner loop goes n times for every outer loop iter.



stretch . ..



COMPLEXITY CLASSES

" O(1) denotes constant running time

" O(log n) denotes logarithmic running time
" O(n) denotes linear running time
" O(n log n) denotes log-linear running time

" O(n¢) denotes polynomial running time (c is a
constant)

= O(c") denotes exponential running time (c is a
constant being raised to a power based on size of
input)



COMPLEXITY CLASSES
ORDERED LOW TO HIGH

O (1) : constant

O(log n) : l* logarithmic

O (n) : inear — |

O(n log n): 7 « loglinear

O (n®) ; polynomial =

e O
C \> {a‘f‘ﬂ"

O (ch) : «— exponential




COMPLEXITY GROWTH
N e N N N

0(1) 1

O(log n) 1 2 3 6
O(n) 10 100 1000 1000000
O(n log n) 10 200 3000 6000000
O(n"2) 100 10000 1000000 1000000000000
0(2™n) 1024 12676506  1071508607186267320948425049060 Good luck!!

00228229 0018105614048117055336074437503
40149670  8837035105112493612249319837881
3205376  5695858127594672917553146825187
1452856923140435984577574698574
8039345677748242309854210746050
6237114187795418215304647498358
1941267398767559165543946077062
9145711964776865421676604298316
52624386837205668069376



LINEAR COMPLEXITY

= Simple iterative loop algorithms are typically linear in
complexity



LINEAR SEARCH
ON UNSORTED LIST

def linear search(L, e):

found = False J
for i in range(len(L)): ﬁ@@iée“
if e == L[i]: VP g et
found = True SQE@{@“%E@ N
return found izﬁtﬁﬁzﬁﬁﬁi
.@gﬁ‘

" must look through all elements to decide it’s not there

A0
= O(len(L)) for the loop *|0(1) to test if e == L[i] \}&E_’E\N;;Eﬂxﬁi
c0(1+4n+1)=0(4n+2)=0(n) hed {\EQE-,E-LD#@
‘[e’t ‘n.'\f}“\{\
o

= overall complexity is O(n) — where nis len(L) "~ ¢



LINEAR SEARCH
ON SORTED LIST

def search(L, e):
for 1 in range(len(L)):
1f L[1] == e:
return True
1if L[1] > e:
return False
return False

\
* must only look until reach a number greater than e @:\wﬁ?ﬁt
N
=10(len(L))|for the loop * O(1) to test if e == L[i] qaﬂ‘#';\uawn

tﬁw

= overall complexity is O(n) — where n is len(L)

= NOTE: order of growth is same, though run time may
differ for two search methods



LINEAR COMPLEXITY

= searching a list in sequence to see if an element is present

" add characters of a string, assumed to be composed of
decimal digits

def addDigits(s):
val = 0
for ¢ 1n s:
val += 1int(c)
return val

= O(len(s))



LINEAR COMPLEXITY

" complexity often depends on number of iterations
def fact_iter(n):
prod = 1
for 1 in range(l, n+l):
prod *= 1
return prod

" number of times around loop is n

" number of operations inside loop is a constant (in this case, 3 —
set i, multiply, set prod)
> 0(1+3n+1)=0(3n+2)=0(n)

" overall just O(n)



NESTED LOOPS

= simple loops are linear in complexity

= what about loops that have loops within them?



QUADRATIC COMPLEXITY

determine if one list is subset of second, i.e., every element
of first, appears in second (assume no duplicates)

def isSubset(Ll, L2):
for el in L1:
matched = False
for e2 in L2:
1f el == e2:
matched = True
break
if not matched:
return False
return True



QUADRATIC COMPLEXITY

def isSubset(Ll, L2): outer loop executed len(L1)
for el in Ll: times
matched = False

each iteration will execute

for e2 in L2: )
inner loop up to len(L2)

1f el == e2: _ ]
3 times, with constant number
matched = True : .
break OT operations
1f not matched: O(IEH(LI)*IEH(LZ))

return False
worst case when L1 and L2

same length, none of
elements of L1 in L2

O(len(L1)?)

return True



QUADRATIC COMPLEXITY

find intersection of two lists, return a list with each element
appearing only once

def intersect(Ll, L2):
tmp = []
for el in Ll:
for e2 in L2:
1f el == e2:
tmp.append(el)
res = []
for e 1in tmp:
if not(e 1in res):
res.append(e)
return res



QUADRATIC COMPLEXITY

def intersect(Ll, L2):
tmp = []
for el in Ll:
for e2 1in L2:
1f el == e2:
tmp.append(el)
res = []
for e in tmp:
1f not(e in res):
res.append(e)
return res

first nested loop takes
len(L1)*len(L2) steps

second loop takes at
most len(L1) steps

determining if element
in list might take len(L1)
steps

if we assume lists are of
roughly same length,
then

O(len(L1)"2)



O() FOR NESTED LOOPS

def g(n):
""" assume n >= 0 """
X =0
for 1 in range(n):
for jJ in range(n):
X += 1
return X

= computes n? very inefficiently

" when dealing with nested loops, look at the ranges

" nested loops, each iterating n times
= O(n?)



CONSTANT COMPLEXITY

= complexity independent of inputs

= very few interesting algorithms in this class, but can
often have pieces that fit this class

= can have loops or recursive calls, but ONLY IF number
of iterations or calls independent of size of input



LOGARITHMIC COMPLEXITY

= complexity grows as log of size of one of its inputs

= example:
> bisection search

° binary search of a list



BISECTION SEARCH

= suppose we want to know if a particular element is
present in a list

" saw last time that we could just “walk down” the list,
checking each element

= complexity was linear in length of the list

= suppose we know that the list is ordered from
smallest to largest

> saw that sequential search was still linear in complexity
> can we do better?



BISECTION SEARCH

pick an index, i, that divides list in half
askif L[1] == e

if not, askif L[i] islarger or smaller thane

N

depending on answer, search left or right half of L fore

A new version of a divide-and-conquer algorithm

* break into smaller version of problem (smaller list), plus
some simple operations

= answer to smaller version is answer to original problem



BISECTION SEARCI
COMPLEXITY ANALYSIS

= finish looking

R -
N o through list
N \e@eﬂ"f" e when
\’Le .
x - 1=n/2
N e
N ,
B soi=logn
L e,f“ﬁ
h ’tg\aﬁ\ = complexity of
ol P Y
: recursion is
N O(log n) -
@ where n is len(L)



BISECTION SEARCH
IMPLEMENTATION 1

def bisect searchl(L, e): ﬂr;;af‘i
. O
if L == []: a0
return False iﬁﬂi
elif len(L) == 1: {‘D{\E\‘I
A
return L[0] == e o\ & 5@(\"*1
0
else: .;,Df“gf .\.“;01 _Li Wt
half = len(L)//2 O\ o
if L[half] > e: . I <
|
return bisect_searchl(:L[:half], e) WO
else: :*'—'-_-_-_—:
return bisect searchl (| L[half:l, e) @5‘;‘
i



COMPLEXITY OF FIRST
BISECTION SEARCH METHOD

" implementation 1 — bisect_searchl

* O(log n) bisection search calls

* On each recursive call, size of range to be searched is cut in half
* If original range is of size n, in worst case down to range of size 1
when n/(272k) = 1; or when k=log n
* O(n) for each bisection search call to copy list

* This is the cost to set up each call, so do this for each level of
recursion

* O(log n) * O(n) = O(n log n)
* if we are really careful, note that length of list to be
copied is also halved on each recursive call

* turns out that total cost to copy is O(n) and this dominates the log
n cost due to the recursive calls



BISECTION SEARCH
ALTERNATIVE

: #
% —
i —
ﬁ

= still reduce size of
problem by factor
of two on each step

" but just keep track
of low and high
portion of list to be
searched

* avoid copying the
list

= complexity of
recursion is again
O(log n) —where n
is len(L)



BISECTION SEARCH
IMPLEMENTATION 2

def bisect search2(L, e):
def bisect search helper(L, e, low, high):
if high == low:
return L[low] ==
mid = (low + high)//2

if Limid] ==
return True of
elif L[mid] > e: tﬁﬁg ecﬁ%
if low == mid: #nothing left to search fﬁﬁﬁ‘tigﬂ
return False djapﬂe
else: O
return |[bisect search helper(L, e, low, mid - 1)
else:
return| bisect search helper(L, e, mid + 1, high) el
. — — ’q:@ -a\\
if len(L) == 0: ﬁﬁﬁ}gﬂaﬁ
return False ﬂﬂfﬁigﬂﬁ
else: {ﬁ@“

return bisect search helper(L, e, 0, len(L) - 1)



COMPLEXITY OF SECOND
BISECTION SEARCH METRHOD

" implementation 2 — bisect_search2 and its helper

* O(log n) bisection search calls
* On each recursive call, size of range to be searched is cut in half

* If original range is of size n, in worst case down to range of size 1
when n/(27k) = 1; or when k =log n

* pass list and indices as parameters
* list never copied, just re-passed as a pointer
* thus O(1) work on each recursive call

* O(log n) * O(1) = O(log n)



LOGARITHMIC COMPLEXITY

def intToStr(1i):

digits = '0123456789"

1f 1 ==
return '0'

result = "'

while 1 > 0O
result = digits[1%10] + result
i=1//10

return result



LOGARITHMIC COMPLEXITY

def intToStr(i): only have to look at loop as
digits = '0123456789" no function calls
if i ==

within while loop, constant

return '0’
number of steps

res = ''
while i > 0: how many times through
res = digits[i%10] + res |oop?
i=1//10 > how many times can one
return result divide i by 107

> O(log(i))



O() FOR ITERATIVE FACTORIAL

= complexity can depend on number of iterative calls
def fact iter(n):
prod = 1
for 1 i1n range(l, n+1):
prod *= 1
return prod

" overall O(n) — n times round loop, constant cost each
time



O() FOR RECURSIVE
FACTORIAL

def fact recur(n):
""" assume n >= 0 """
1if n <= 1:
return 1
else:
return n*fact recur(n — 1)

= computes factorial recursively

" if you time it, may notice that it runs a bit slower than
iterative version due to function calls

= still O(n) because the number of function calls is linear
in n, and constant effort to set up call

" iterative and recursive factorial implementations are
the same order of growth



LOG-LINEAR COMPLEITY

" many practical algorithms are log-linear

= very commonly used log-linear algorithm is merge sort



POLYNOMIAL COMPLEXITY

" most common polynomial algorithms are quadratic,
i.e., complexity grows with square of size of input

= commonly occurs when we have nested loops or
recursive function calls



EXPONENTIAL COMPLEXITY

" recursive functions where more than one recursive
call for each size of problem

> Towers of Hanoi

" many important problems are inherently exponential
> unfortunate, as cost can be high

> will lead us to consider approximate solutions as may
provide reasonable answer more quickly



COMPLEXITY OF TOWERS OF
HANOI

" Let t, denote time to solve tower of size n
"t, =2t ,+1

= =2(2t,,+1)+1
" =4t L, +2+1

= =42t ,+1)+2+1 Geometric growth

" =8ty t4+2+4] a= 2"+ +2 +1
= =2kt 42K+ L +4+2+1 2a=2"+2"1 + . +2

= =24 2Miy L +4+2+1 a =2 -1
= =2"-1

= 50 order of growth is O(2")



stretch . ..



EXPONENTIAL COMPLEXITY

= given a set of integers (with no repeats), want to
generate the collection of all possible subsets — called
the power set

={1, 2, 3, 4} would generate

L {1512}, 35 145 11, 21,11, 31,11, 45,12, 31,12, 4}, 13, 4},
{1,2,3},{1, 2,4} {1, 3,4}, {2,3,4}, {1, 2,3, 4}

" order doesn’t matter

L 1542511, 2}, 35,41, 35,12, 35,11, 2, 3}, {4}, {1, 4}, 12,
4}, {1, 2, 4}, 3,4}, {1, 3,4}, {2,3, 44, {1, 2, 3, 4}



POWER SET — CONCEPT

"we want to generate the power set of integers from 1to n

" assume we can generate power set of integers from 1 to
n-1

" then all of those subsets belong to bigger power set
(choosing not include n); and all of those subsets with n
added to each of them also belong to the bigger power set
(choosing to include n)

2 313‘ {1,2,6 3% {4} {1, 4}, {2, 4}, {1, 2,
, 4}

/

" nice recursive description!



EXPONENTIAL COMPLEXITY

def genSubsets(L):

res = []
1f len(L) == 0:
return [[]]

smaller = genSubsets(L[:-1])

extra = L[-1:]
new = []
for small in smaller:

new.append(small+extra)

return smaller+new



EXPONENTIAL COMPLEXITY

def genSubsets(L):

res = []

if len(L) == O0:
return [[]]

smaller = genSubsets(L[:-1])

extra = L[-1:]

new = []

for small in smaller:
new.append(small+extra)

return smaller+new

assuming append is
constant time

time includes time to solve
smaller problem, plus time
needed to make a copy of
all elements in smaller
problem



EXPONENTIAL COMPLEXITY

def genSubsets(L):

res = | ]

if len(L) ==
return [[]]

smaller = genSubsets(L[:-1])

extra = L[-1:]

new = ||

for small in smaller:
new.append(small+extra)

return smaller+new

but important to think
about size of smaller

know that for a set of size
k there are 2k cases

now can we deduce
overall complexity?



EXPONENTIAL COMPLEXITY

" let t, denote time to solve problem of size n
" let s, denote size of solution for problem of size n

"t =t,,ts,,+c(wherecissome constant number of
operations)

"t =t ,+2"+cC

= =t ,+2M+c+2" 4
Thus
= =t 42"+ L+ 2M 4 ke -
computing
= =t +20+.. 42"+ nc power set is

= =1+2"+nc o(2")



COMPLEXITY CLASSES

" O(1) — code does not depend on size of problem

=" O(log n) — reduce problem in half each time through
process

" O(n) — simple iterative or recursive programs
" O(n log n) — will see next time
" O(n¢) — nested loops or recursive calls

= O(c") — multiple recursive calls at each level



SOME MORE EXAMPLES OF
ANALYZING COMPLEXITY



COMPLEXITY OF
I TERATIVE FIBONACCI

def

fib iter(n):
if n == 0:
return 0 o™
elif n == 1: Eﬁﬁh
return 1 o\
else: X
fib 1 = 0 U
fib ii = 1 oM

= Best case:
0O(1)
= Worst case:
0O(1) + O(n) + O(1) = O(n)

for 1 1n range(
tmp = fib 1

n-1):

fib i = fib ii \
fib ii = tmp + fib ii| OV

return fib 11




COMPLEXITY OF
RECURSIVE FIBONACCI

def fib recur(n):
'"" agsumes n an int >= Q """
if n == 0:
return 0
elif n == 1:
return 1
else:
return fib recur(n-1) + fib recur(n-2)

= Worst case:
0(2")




COMPLEXITY OF RECURSIVE
FIBONACCI

£ib (5)
Efff R\Ka
fib(4) 1b (3)
i{ff’ Kx\& g’fﬁ
ib (3) £ib (2) ib (2) fib (1)
z’ff \K“a
£ib (2) £ib (1)

= actually can do a bit better than 2" since tree of
cases thins out to right

= but complexity is still exponential



BIG OH SUMMARY

= compare efficiency of algorithms
* notation that describes growth

* lower order of growth is better
* independent of machine or specific implementation

= use Big Oh
* describe order of growth
* asymptotic notation
* upper bound
* worst case analysis



COMPLEXITY OF COMMON
PYTHON FUNCTIONS

" Lists: n is len (L) " Dictionaries: n is len (d)
* index O(1) = worst case
* store 0O(1) . index o(n)
* length O(1) * store O(n)
* append 0O(1) * length O(n)
== O(n) * delete O(n)
* remove  O(n) * iteration  O(n)
© COpy O(n) " average case
* reverse  O(n)  index 0(1)
* iteration O(n) * store O(1)
* in list O(n) * delete O(1)
)

* iteration  O(n



WHY W

- WANT TO UNDERSTAND

cFFICIENCY OF PROGRAMS

" how can we reason about an algorithm in order to
predict the amount of time it will need to solve a
problem of a particular size?

" how can we relate choices in algorithm design to the
time efficiency of the resulting algorithm?

> are there fundamental limits on the amount of time we
will need to solve a particular problem?



ORDERS OF GROW TH: RECAP

Goals:

" want to evaluate program’s efficiency when input is very big

" want to express the growth of program’s run time as input
size Erows

= want to put an upper bound on growth — as tight as possible
" do not need to be precise: “order of” not “exact” growth

= we will look at largest factors in run time (which section of
the program will take the longest to run?)

" thus, generally we want tight upper bound on growth, as
function of size of input, in worst case



Exercise

What is the asymptotic complexity of each of the following functions?

def g(L, =):

""", a list of ints, e 1s an int"""

for 1 in range (100) :
for 1 i1n L:
1f 2l == e:

return True
return False
def hi{L, =):

""", a list of ints, & is an int"""

for 1 in range(e):
for 1 i1n L:
1f el == e:

return True
return False

Explain why?



