

2024 Mid-Year Examination Pre-University 3

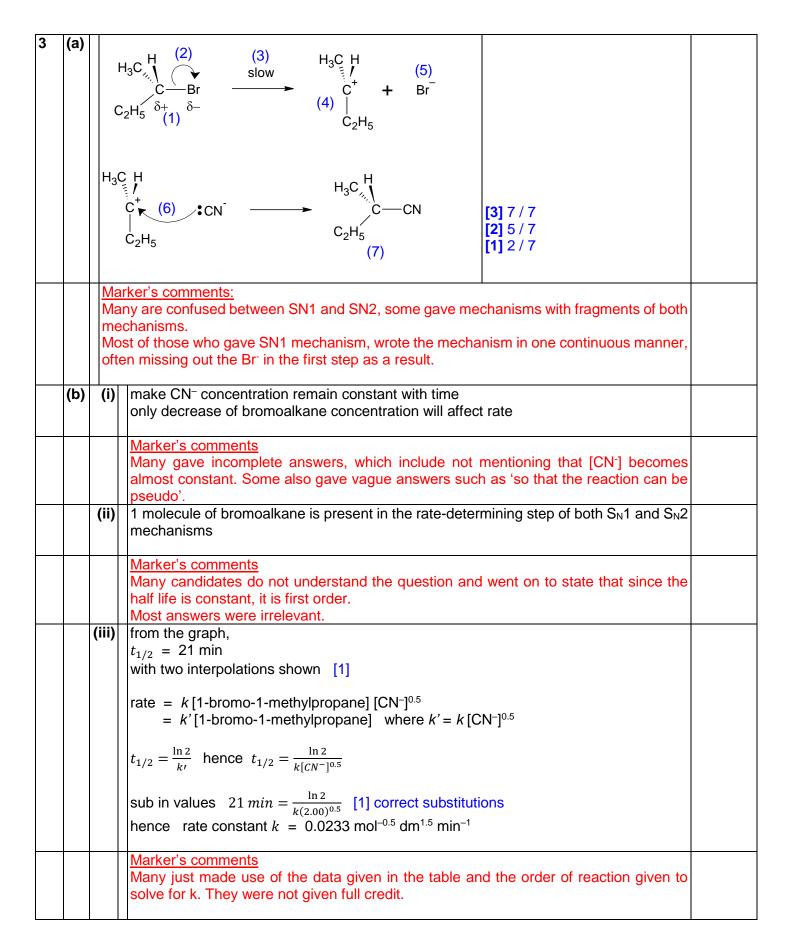
H2 CHEMISTRY

Paper 3 Free Response

9729/03

5 July 2024

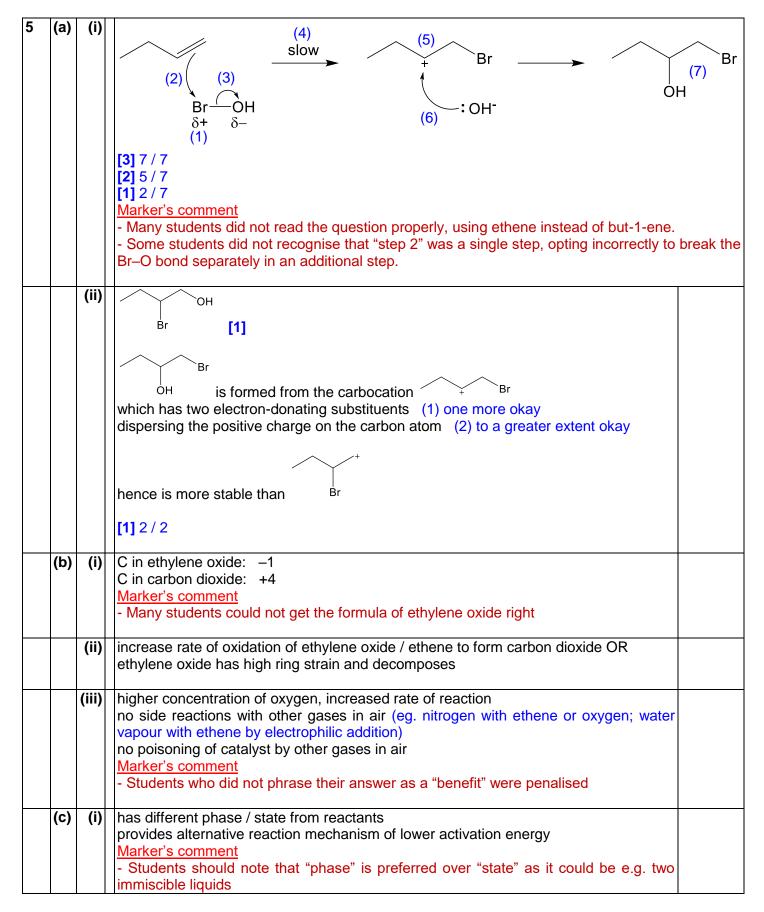
2 hours

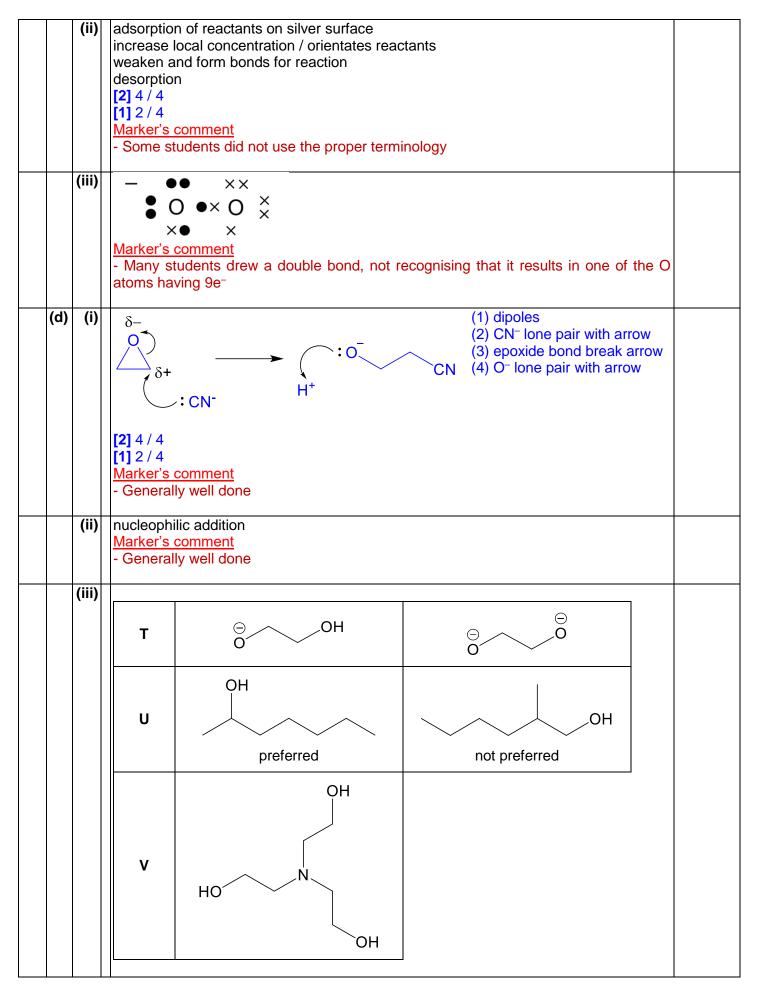

Section A

1	(a)	(i)	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ⁵ 4s ²	
			Marker's comment Many candidates did well for this question.	
		(ii)	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}{}\\ \end{array} \\ \end{array} \\ 3d_{xy} \\ \end{array} \\ \begin{array}{c} \end{array} \\ 3d_{x^2-y^2} \\ \end{array} \\ \begin{array}{c} \end{array} \\ 3d_{z^2} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} $	
			<u>Marker's comment</u> Some candidates did not draw the $3d_{xy}$ orbital between the x and y axis.	
		(iii)	forms ions of variable oxidation states / variable oxidation states in compounds forms coloured compounds high density	
			Marker's comment Candidates understand what the question wants. Weaker candidates wrote 'more oxidation number' instead of forms ions of 'variable oxidation state'.	

(b)						
		ectrostatic forces of attraction between oppositely-charged ions n_2O_7 has simple molecular structure				
	ins	tantaneous dipole-induced dipole forces of attraction between molecules				
	the	e stronger forces in MnO require more energy to overcome				
	points:					
	po	(1) identify structure and bonding in MnO				
		(2) identify structure and bonding in Mn_2O_7				
		(3) identify MnO has stronger forces, compare energy				
	12					
		all 3 points either (1) or (2)				
		just (3)				
	N/a	vr/cor's commont				
		arker's comment is question proved to be challenging to candidates. Many who attempted were unable to				
		entify the correct structure and bonding in MnO and Mn_2O_7 . Some candidates explained				
	wh	y Mn2O7 has a simple molecular structure, but did not continue to compare with the				
	str	ucture and bonding in MnO.				
(c)	(i)	$Mn_2O_7 + H_2O \rightarrow 2HMnO_4$				
(-)	(-)					
		Marker's comment				
	(::)	Many candidates did well for this question.				
	(ii)	hydrolysis				
		Marker's comment				
		Some candidates did not attempt this question. Those who did, some wrote 'hydration'				
 	/:::)	instead of hydrolysis.				
	(iii)					
		$ $ $ $ $ $ $ $ $ $				
		ÔÔ				
		Madan's comment				
		Marker's comment Majority of the candidates were unable to do this question.				
(d)		m Ti to Cu,				
		atively similar atomic radii				
		clear charge increases ielding increases				
		t due to electrons added to 3d				
		electrons experience similar effective nuclear charge				
		5/5				
	L.	3/5				
	Ma	arker's comment				
	Ma	any candidates confused this explanation with the trend of atomic radii across a period				
	for the main group elements.					

2	(a)	(i)	2,4-dinitrophenylhydrazine if orange precipitate forms, s if no precipitate forms, sampl <u>Marker's comment</u> Some candidates gave tri-ioo For candidates who gave the for P', 'P remains the same' a	ample is O le is P domethane test as the disting correct distinguishing test, s	ome gave 'no visible reaction
		(ii)	information L was heated with concentrated H ₂ SO ₄	reaction dehydration / elimination of water (1)	inference L was an alcohol (3) M and N were alkenes (4)
			M and N were heated with KMnO₄ / H⁺	oxidative cleavage / vigorous oxidation (2)	for O , the carboxyl carbon and ketone carbon were once joined with C=C in M for P , the two carboxyl carbon atoms were once joined with C=C in N
			hence		ОН
			M [1] for every 2 reactions / infe	Nerences	L
		(iii)		of 'vigorous oxidation'. nded to more substituents /	versus 2 in N
		(iv)	number of enantiomers = 2^{2}	³ = 8	




	(iv)				
			[CN ⁻] / mol dm ⁻³	initial rate / mol dm ⁻³ min ⁻¹	
			1.5	0.00285 or 0.00286	
			2.0	0.00330	
		-	3.0	0.00404	
			5.0	0.00521 or 0.00522	
			r of students did not atte	empt the question. account information given in (iii) assumed that	
		both reactants	are first order.	- · · ·	
	(v)		inhindered nucleophile a / bromoalkane / only 2 h	pproach ydrocarbon groups are present	
			table carbocation interming hydrocarbon groups	ediate disperse positive charge on carbon atom	
		Marker's com	nents t attempt this question.		
	(vi)			iomer (complete stereoinversion)	
				ntiomer and 0.5 part (–)-enantiomer 75% of enantiomers are (–)	
		working needs		75% of enantiomers are (–)	
		Markar'a comp	aanta		
		Marker's comr Majority did no	t attempt this question.		
(-)				and the answers were incorrect.	
(c)			1.00		
			1.00		
		/ mol dm ⁻³		P	
				a	
			0	time	
	R c	loes not hydroly	se		
	cor	rect graph draw	n [1] completely flat ok	ау	
	C-I	bond has partia	p orbitals of iodine atom I double bond character and will not break [1]	a and benzene ring / / electron delocalise to C-I bond +	
	 P h	ydrolyses slowe	er than O		
		rect graph draw			
		I hand is strong	ger than C-Br bond +		
				ital overlap / shorter bond length [1]	

	Mai inco mei Mai with hyd	<u>arker's comments</u> ark scheme was loosened a little. Explanations given by candidates were mostly complete. Some quoted bond energy from data booklet even though question did not ention the use of DB. any knew that R doesn't undergo hydrolysis but still drew a curve downwards for R, albeit h a more gradual gradient. Students must show understanding that R doesn't undergo drolysis to gain credit. is question shows that some students still do not understand that the trend of ease of drolysis is due to the bond strength. Some compared the electronegativity instead.	
(d)	(i)	$K_{sp} = [Ag^+]^2 [CO_3^{2^-}]$ let the solubility of $Ag_2CO_3 = x \mod dm^{-3}$ $8.46 \times 10^{-12} = (2x)^2 (x)$ $= 4x^3$ hence $x = 1.28 \times 10^{-4} \mod dm^{-3}$ Marker's comments	
		Common mistakes include failing to take into the stoichiometry of the equilibrium, hence using x, instead of 2x, for [Ag ⁺]. Some also did not give the units.	
	(ii)	dissolution of silver carbonate: $Ag_2CO_3(s) \rightleftharpoons 2Ag^+(aq) + CO_3^{2-}(aq) - equilibrium 1$ in the presence of CO_3^{2-} , less Ag_2CO_3 can dissolve / forward reaction is suppressed before the ionic product exceeds K_{sp} [1] in the presence of NH ₃ , $Ag^+ + 2NH_3 \rightleftharpoons Ag(NH_3)_2^+$ complex ion is formed [1] Ag^+ concentration decreases / Ag^+ is used up equilibrium 1 position shifts right to offset this more Ag_2CO_3 can dissolve [1] in the presence of H ⁺ , H ⁺ reacts with CO_3^{2-} / CO_3^{2-} concentration decreases equilibrium 1 position shifts right to offset this more Ag_2CO_3 can dissolve [1]	
		<u>Marker's comments</u> Very poorly done, especially for NH ₃ and HNO ₃ . Candidates were not able to recognise that the NH ₃ reacts with the Ag ⁺ and that the H ⁺ reacts with $CO_3^{2^-}$.	

4	(a)	(i)	$n_T = n_1 + n_2$	
			$p_T V_T = p_1 V_1 + p_2 V_2 [1]$	
			$p_T(1.2) = (240000)(0.2) + (102000)(1.0)$ hence $p_T = 125000$ Pa [1]	
			Marker's comment	
			Common mistake happens when students do not read the question thoroughly, and included the percentages in their calculations. The percentage composition of Nitrox is not necessary.	
		(ii)	<i>p</i> is inversely proportional to <i>V</i>	
			$p_1V_1 = p_2V_2$ (1)(1.5) = (230)(V_2) volume of compressed nitrox, $V_2 = 6.52 \times 10^{-3} \text{ m}^3$	
			Marker's comment Some students did not recall the correct relationship between <i>p</i> and <i>V</i> .	
	(b)	(i)	CO ₂ concentration increases equilibrium 1 position shifts right to offset	
			H ₂ CO ₃ concentration increases equilibrium 2 position shifts right to offset hence H ⁺ concentration increases	
			[2] 5 / 5 [1] 3 / 5	
		(ii)	identify: H ₂ CO ₃ / HCO ₃ ⁻	
			explain (any one): H ₂ CO ₃ lost one H ⁺ (to form HCO ₃ ⁻)	
			HCO_3^- is short of one H ⁺ HCO_3^- is the conjugate base (of H ₂ CO ₃)	

anode half-cell (reverse direction) E^9 / V remarks C_{l_2} / C^{+} +1.36 (1) O_2 / H_2O +1.23in dilute NaCl, H_2O is preferentially oxidised to form O_2 (2)in concentrated NaCl, C^{-} is preferentially oxidised to form O_2 (2)in concentrated NaCl, C^{-} is preferentially oxidised to form O_2 (2)in concentrated NaCl, C^{-} is preferentially oxidised to form O_2 (2)in concentrated NaCl, C^{-} is preferentially oxidised to form O_2 (2)in concentrated NaCl, C^{-} is preferentially oxidised to form O_2 (2)in concentrated NaCl, C^{-} is preferentially oxidised to form O_2 (2)in concentrated NaCl, C^{-} is preferentially oxidised to form O_2 (2)in concentrated NaCl, C^{-} is preferentially oxidised to form O_2 (2)in concentrated NaCl, C^{-} is preferentially oxidised to form O_2 (2)in concentrated NaCl, C^{-} is preferentially oxidised to form O_2 (2)in concentrated NaCl, C^{-} is preferentially oxidised to form O_2 (2)in diute NaCl, C^{-} is preferentially oxidised to form O_2 (2)in concentrated NaCl, C^{-} is preferentially oxidised to form O_2 (2)in diute NaCl, C^{-} is preferentially oxidised to form O_2 (2)in diute NaCl, C^{-} is preferentially oxidised to form O_2 (2)in diute NaCl, $C^{+} + 2e^{-} \rightarrow -2Ch^{-}$ in the number of moles of electrons passed first $Q = It = nF$ (1) cl_2 (5/C200) = n_c^{-} (96500) $n_c^{-} = 0.1865$ mol = 0.09326 molthen find the number of moles of bleach produc	(c)	(i)					
O_2/H_2O +1.23less positivein dilute NaCl, H_2O is preferentially oxidised to form O_2 (2)in concentrated NaCl, C' is preferentially oxidised to form Cl_2 (3) because equilibrium Cl_2/C' position shifts left to offset high C' concentration (4) E becomes less positive than +1.23 V (5)[2] 5/5 [1] 3/5(ii) anode: $2Ct^r \rightarrow Cl_2 + 2e^-$ cathode: $2H_2O + 2e^- \rightarrow H_2 + 2OH^-$ (iii) bleach forming reaction: $[O] Cl_2 + 4OH^- \rightarrow 2ClO^- + H_2O + 2e^-$ $[R] Cl_2 + 2e \rightarrow 2Ct^-overall: Cl_2 + 2OH^- \rightarrow ClO^- + H_2O + Ct^-(iv) calculate number of moles of electrons passed firstQ = lt = nF(2.5)(7200) = n_e - (96500)n_{e^-} = 0.1865 mol [1]then find the number of moles of chlorine gas producedfrom the anode half-equation, since \frac{n_{Cl_2}}{n_{e_1}} = \frac{1}{2}hence n_{Cl_2} = \frac{1}{2} \times 0.1865 mol = 0.09326 molthen find the number of moles of bleach producedsince \frac{n_{Cl_2}}{n_{el_3}} = \frac{1}{1}hence n_{Cl_2} = \frac{1}{1}hence n_{Cl_2} = \frac{1}{1}M find n_{e^-}M1 find n_{e^-}$				<i>Ε</i> ^θ / V	remarks		
in dilute NaCl, H ₂ O is preferentially oxidised to form O ₂ (2)in concentrated NaCl, Cl ⁻ is preferentially oxidised to form Cl ₂ (3) because equilibrium Cl ₂ / Cl ⁻ position shifts left to offset high Cl ⁻ concentration (4) E becomes less positive than +1.23 V (5)[2] 5 / 5 [1] 3 / 5(ii) anode: $2Cl^- \rightarrow Cl_2 + 2e^-$ cathode: $2H_2O + 2e^- \rightarrow H_2 + 2OH^-$ (iii) bleach forming reaction: [O] $Cl_2 + 4OH^- \rightarrow 2ClO^- + 2H_2O + 2e^-$ werall: $Cl_2 + 2OH^- \rightarrow ClO^- + H_2O + Cl^-$ (iv) calculate number of moles of electrons passed first $Q = It = nF$ $(2.5)(7200) = n_e^{-(96500)}$ $n_{e^-} = 0.1865 mol [1]then find the number of moles of chlorine gas producedfrom the anode half-equation, since \frac{n_{Cl_2}}{n_{e^-}} = \frac{1}{2}hence n_{cl_2} = \frac{1}{2} \times 0.1865 mol = 0.09326 molthen find the number of moles of bleach producedsince \frac{n_{cl_2}}{n_{e_e}} = \frac{1}{2}hence n_{cl_2} = \frac{1}{2}hence n_{cl_2} = \frac{1}{2}Mence n_{cl_2} = \frac{1}{$			Cl ₂ / Cl ⁻	+1.36 <mark>(1)</mark>			
H2O is preferentially oxidised to form O2 (2)in concentrated NaCl, CL' is preferentially oxidised to form CI2 (3) because equilibrium CI2 / CL' position shifts left to offset high CL' concentration (4) E becomes less positive than +1.23 V (5)[2] 5 / 5 [1] 3 / 5(ii) anode: $2CL^- \rightarrow CI_2 + 2e^-$ cathode: $2H_2O + 2e^- \rightarrow H_2 + 2OH^-$ (iii) bleach forming reaction: [O] $CI_2 + 4OH^- \rightarrow 2CIO^- + 2H_2O + 2e^-$ [R] $CI_2 + 2e^- \rightarrow 2CL^-$ overall: $CI_2 + 2OH^- \rightarrow CIO^- + H_2O + CL^-$ (iv) calculate number of moles of electrons passed first $Q = It = nF$ (2.5)(7200) $= n_e^-$ (96500) $n_e^- = 0.1865 \text{ mol } [1]$ then find the number of moles of chlorine gas produced from the anode half-equation, since $\frac{n_{CI_2}}{n_{e_r}} = \frac{1}{2}$ hence $n_{CI_2} = \frac{1}{2} \times 0.1865 \text{ mol } = 0.09326 \text{ mol}$ then find the number of moles of bleach produced since $\frac{n_{CI_2}}{n_{CI_2}} = \frac{1}{1}$ hence $n_{CI_2} = \frac{1}{2}$ hence $n_{CI_2} = -\frac{1}{2}$ hence $n_{CI_2} = -\frac{1}{2}$ <b< th=""><th></th><th></th><th>O₂ / H₂O</th><th>+1.23</th><th>less positive</th><th></th><th></th></b<>			O ₂ / H ₂ O	+1.23	less positive		
Cr is preferentially oxidised to form Cl_2 (3) because equilibrium Cl_2 / Cr position shifts left to offset high Cr concentration (4) E becomes less positive than +1.23 V (5)[2] 5 / 5 [1] 3 / 5(ii)anode: $2Cl^- \rightarrow Cl_2 + 2e^-$ cathode: $2H_2O + 2e^- \rightarrow H_2 + 2OH^-$ (iii)bleach forming reaction: [O] $Cl_2 + 4OH^- \rightarrow 2ClO^- + 2H_2O + 2e^-$ [R] $Cl_2 + 2e^- \rightarrow 2Cl^-$ overall: $Cl_2 + 2OH^- \rightarrow ClO^- + H_2O + Cl^-$ (iv)calculate number of moles of electrons passed first $Q = It = nF$ (2.5)(7200) $= n_e - (96500)$ $n_{e^-} = 0.1865 mol [1]$ then find the number of moles of chlorine gas produced from the anode half-equation, since $\frac{n_{Cl_2}}{n_{e^-}} = \frac{1}{2}$ hence $n_{Cl_2} = \frac{1}{2} \times 0.1865 mol = 0.09326 mol$ then find the number of moles of bleach produced since $\frac{n_{Cl_2}}{n_{Cl_2}} = \frac{1}{1}$ hence $n_{Cl_2} = n_{NaClO} = 0.09326 mol$ mass of NaClO = 0.09326 mol × 74.5 g mol^{-1} = 6.95 g [1]M1 find n_e^-				dised to form O_2 (2)		
(ii)anode: $2Cl^- \rightarrow Cl_2 + 2e^-$ cathode: $2H_2O + 2e^- \rightarrow H_2 + 2OH^-$ (iii)bleach forming reaction: [O] $Cl_2 + 4OH^- \rightarrow 2ClO^- + 2H_2O + 2e^-$ [R] $Cl_2 + 2e^- \rightarrow 2Cl^-$ overall: $Cl_2 + 2OH^- \rightarrow ClO^- + H_2O + Cl^-$ (iv)calculate number of moles of electrons passed first $Q = lt = nF$ $(2.5)(7200) = n_e^-(96500)$ $n_{e^-} = 0.1865 \text{ mol [1]}$ then find the number of moles of chlorine gas produced from the anode half-equation, since $\frac{n_{Cl_2}}{n_{e^-}} = \frac{1}{2}$ hence $n_{Cl_2} = \frac{1}{2} \times 0.1865 \text{ mol = 0.09326 mol}$ then find the number of moles of bleach producedsince $\frac{n_{Cl0^-}}{n_{Cl_2}} = \frac{1}{1}$ hence $n_{Cl0^-} = n_{NaCl0} = 0.09326 \text{ mol}$ mass of NaClO = 0.09326 mol × 74.5 g mol^{-1} = 6.95 g [1]M1 find n_{e^-}			Cl [−] is preferentially oxid because equilibrium Cl ₂	/ Cl- position shifts	s left to offset high C <i>I</i>	concentration (4)	
(iii)bleach forming reaction: [O] $Cl_2 + 4OH^- \rightarrow 2C/O^- + 2H_2O + 2e^-$ [R] $Cl_2 + 2e^- \rightarrow 2Cl^-$ overall: $Cl_2 + 2OH^- \rightarrow CIO^- + H_2O + Cl^-$ (iv)calculate number of moles of electrons passed first $Q = It = nF$ $(2.5)(7200) = n_e^-(96500)$ $n_{e^-} = 0.1865 \text{ mol [1]}$ then find the number of moles of chlorine gas produced from the anode half-equation, since $\frac{n_{Cl_2}}{n_{e^-}} = \frac{1}{2}$ hence $n_{Cl_2} = \frac{1}{2} \times 0.1865 \text{ mol = } 0.09326 \text{ mol}$ then find the number of moles of bleach produced since $\frac{n_{Cl_2}}{n_{Cl_2}} = \frac{1}{1}$ hence $n_{Cl0^-} = n_{NaCl0} = 0.09326 \text{ mol}$ mass of NaC/O = $0.09326 \text{ mol} \times 74.5 \text{ g mol}^{-1} = 6.95 \text{ g [1]}$ M1 find n_{e^-}							
$[O] Cl_2 + 4OH^- \rightarrow 2ClO^+ + 2H_2O + 2e^-$ $[R] Cl_2 + 2e^- \rightarrow 2Cl^-$ overall: $Cl_2 + 2OH^- \rightarrow ClO^- + H_2O + Cl^-$ $(iv) calculate number of moles of electrons passed first$ $Q = lt = nF$ $(2.5)(7200) = n_e^-(96500)$ $n_{e^-} = 0.1865 \text{ mol } [1]$ then find the number of moles of chlorine gas produced from the anode half-equation, since $\frac{n_{Cl_2}}{n_{e^-}} = \frac{1}{2}$ hence $n_{Cl_2} = \frac{1}{2} \times 0.1865 \text{ mol } = 0.09326 \text{ mol}$ then find the number of moles of bleach produced since $\frac{n_{Cl_2}}{n_{Cl_2}} = \frac{1}{1}$ hence $n_{Cl_0^-} = n_{NaCl_0} = 0.09326 \text{ mol}$ mass of NaClO = 0.09326 mol × 74.5 g mol ⁻¹ = 6.95 g [1] M1 find n_{e^-}		(ii)					
$Q = It = nF$ (2.5)(7200) = n_e -(96500) $n_{e^-} = 0.1865 \text{ mol [1]}$ then find the number of moles of chlorine gas produced from the anode half-equation, since $\frac{n_{Cl_2}}{n_{e^-}} = \frac{1}{2}$ hence $n_{Cl_2} = \frac{1}{2} \times 0.1865 \text{ mol } = 0.09326 \text{ mol}$ then find the number of moles of bleach produced since $\frac{n_{Cl_2}}{n_{Cl_2}} = \frac{1}{1}$ hence $n_{Cl_0^-} = n_{NaCl_0} = 0.09326 \text{ mol}$ mass of NaC/O = 0.09326 mol × 74.5 g mol ⁻¹ = 6.95 g [1] M1 find n_{e^-}		(iii)	$ \begin{array}{ll} [O] & Cl_2 + 4OH^- \rightarrow 2C\\ [R] & Cl_2 + 2e^- \rightarrow 2Cl^- \end{array} $	lO ⁻ + 2H ₂ O + 2e ⁻			
$(2.5)(7200) = n_{e^-}(96500)$ $n_{e^-} = 0.1865 \text{ mol} [1]$ then find the number of moles of chlorine gas produced from the anode half-equation, since $\frac{n_{Cl_2}}{n_{e^-}} = \frac{1}{2}$ hence $n_{Cl_2} = \frac{1}{2} \times 0.1865 \text{ mol} = 0.09326 \text{ mol}$ then find the number of moles of bleach produced since $\frac{n_{Cl0^-}}{n_{Cl_2}} = \frac{1}{1}$ hence $n_{Cl0^-} = n_{NaCl0} = 0.09326 \text{ mol}$ mass of NaC/O = 0.09326 mol × 74.5 g mol ⁻¹ = 6.95 g [1] M1 find n_{e^-}		(iv)	calculate number of mo	es of electrons pas	sed first		
from the anode half-equation, since $\frac{n_{Cl_2}}{n_{e^-}} = \frac{1}{2}$ hence $n_{Cl_2} = \frac{1}{2} \times 0.1865 \text{ mol} = 0.09326 \text{ mol}$ then find the number of moles of bleach produced since $\frac{n_{Cl0^-}}{n_{Cl_2}} = \frac{1}{1}$ hence $n_{Cl0^-} = n_{NaCl0} = 0.09326 \text{ mol}$ mass of NaC/O = 0.09326 mol × 74.5 g mol ⁻¹ = 6.95 g [1] M1 find n_{e^-}			$(2.5)(7200) = n_e^-(9650)$	0)			
hence $n_{Cl_2} = \frac{1}{2} \times 0.1865 \text{ mol} = 0.09326 \text{ mol}$ then find the number of moles of bleach produced since $\frac{n_{Cl0^-}}{n_{Cl_2}} = \frac{1}{1}$ hence $n_{Cl0^-} = n_{NaCl0} = 0.09326 \text{ mol}$ mass of NaClO = 0.09326 mol × 74.5 g mol ⁻¹ = 6.95 g [1] M1 find n_e -			then find the number of	moles of chlorine g	as produced		
then find the number of moles of bleach produced since $\frac{n_{ClO^-}}{n_{Cl_2}} = \frac{1}{1}$ hence $n_{ClO^-} = n_{NaClO} = 0.09326$ mol mass of NaClO = 0.09326 mol × 74.5 g mol ⁻¹ = 6.95 g [1] M1 find n_e -			from the anode half-equ	ation, since $\frac{n_{Cl_2}}{n_{e^-}} = \frac{1}{2}$	<u>1</u> 2		
since $\frac{n_{Clo^-}}{n_{Cl_2}} = \frac{1}{1}$ hence $n_{Clo^-} = n_{NaClo} = 0.09326 \text{ mol}$ mass of NaC/O = 0.09326 mol × 74.5 g mol ⁻¹ = 6.95 g [1] M1 find n_{e^-}			hence $n_{Cl_2} = \frac{1}{2} \times 0.186$	5 mol = 0.09326 r	nol		
hence $n_{ClO^-} = n_{NaClO} = 0.09326 \text{ mol}$ mass of NaClO = 0.09326 mol × 74.5 g mol ⁻¹ = 6.95 g [1] M1 find n_{e^-}			then find the number of	moles of bleach pro	oduced		
mass of NaC/O = 0.09326 mol × 74.5 g mol ⁻¹ = 6.95 g [1] M1 find n_{e^-}			since $\frac{n_{ClO}}{n_{Cl_2}} = \frac{1}{1}$				
					nol ⁻¹ = 6.95 g [1]		
				mass of NaC/O			

[Turn over

	 Marker's comment Not very well done, especially for V as students did not pay attention to the Some students miscounted the number of carbons in their structures. 	ratio.
--	--	--------

6	(a)	(i)	although nuclear charge and shielding increase distance between valence electrons and nucleus increases weaker electrostatic forces of attraction between them increasing atomic radii down Group 2 [2] 4 / 4 [1] 2 / 4 Marker's comment - Generally well done, but perfect answers were rare				
		(ii)	 down Group 2, M²⁺ ions have lower charge density M²⁺ ion polarises NO₃⁻ towards itself less N–O bond remains strong requiring more ene hence increasing thermal stability [2] 4 / 4 [1] 2 / 4 Marker's comment Some students still confuse charge density v Many students were imprecise with their ans but not mentioning of what; "atomic radii incre 	vith lattice energy. swers – e.g. "charge density decreases",			
		(iii)	let η_{O_2} be x mol total mass of NO ₂ + O ₂ gases = 4x(46.0) + x hence $x = \eta_{O_2} = 0.0118056$ mol [1]	(32.0) = 2.55 g			
			= 0.023611 mol mass of XO = 5.00 - 2.55 = 2.45 g hence molar mass of XO = $\frac{2.45 g}{0.023611 mol}$ = 103.8 g mol ⁻¹ [1] hence A _r of X = 103.8 - 16.0 = 87.8	uld have arrived at same numerical answer)	, which		

(b)	$ \begin{array}{c} A/Cl_3 + 6H_2O \rightarrow Al(H_2O)_6^{3+} + 3Cl^- \\ \text{water coordinates to } Al^{3+} [1] \\ Al(H_2O)_6^{3+} \rightleftharpoons Al(H_2O)_5(OH)^{2+} + H^+ \\ AlCl_3 / Al(H_2O)_6^{3+} / Al^{3+} \text{ dissociate / hydrolyses partially} [1] \end{array} $				
	A <i>l</i> ³⁻ pola bre rele <u>Ma</u>	 ⁺ has high charge density arises H₂O ⁺ ak / weaken O–H bond ⁺ ease H⁺ ion [1] <u>rker's comment</u> significant number of students could not recall the 2 reaction equations. 			
(c)	(i)	CI C			
	(ii)	the forward reaction is endothermic due to bond-breaking [1] equilibrium position shifts right to offset temperature increase by absorbing excess heat energy hence average M_r decreases [1] <u>Marker's comment</u> - Many students could not recognise that it was an equilibrium reaction, and that they had to deduce the ΔH in order to apply LCP.			
	(iii)	$\Delta S \text{ is positive}$ due to increased number of moles of gas molecules [1] since $\Delta G = \Delta H - T\Delta S$ and ΔH is positive at high T $ \Delta H $ (positive term) < $ -T\Delta S $ (negative term) hence ΔG is negative and the dissociation reaction is spontaneous [1] at low T $ \Delta H $ (positive term) > $ -T\Delta S $ (negative term) hence ΔG is positive and the dissociation reaction is not spontaneous [1] Marker's comment - Poorly done. Many students did not phrase the second section of their answers well.			

(d)	(i)	pV = nRT	
	()	$\binom{268}{101325} \binom{268}{10^6} = n_{gas}(8.31)(673)$	
		$n_{gas} = 0.0048555 \text{ mol} $ [1]	
		$n_{gas} = \frac{m}{M_r}$	
		M_r of gas mixture = $\frac{0.84 g}{0.0048555 mol}$ = 173.0 [1]	
		Marker's comment	
		- Many students did not realise that the ICE table will not work for this question.	
	(ii)	$n_{Al_2Cl_6} = \frac{0.84 g}{267.0 g mol^{-1}} = 0.00315 \text{mol}$	
		$n_{AlCl_3} = \frac{0.84 \ g}{133.5 \ g \ mol^{-1}} = 0.00629 \ mol$	
	(iii)	$n_{Al_2Cl_6}$ that have dissociated = 0.0048555 mol - 0.003146 mol = 0.001709 mol	
		$%Al_2Cl_6$ that have dissociated = $\frac{0.001709 mol}{0.003146 mol} \times 100\% = 54.3\%$	
		<u>Marker's comment</u> - A majority of students were unable to solve this difficult question.	