2023 Term 4 Timed Practice (Structured Remedial Session 3)

Question 1. (N14/2/4(b)(ii))

It is given that $w = \sqrt{3} - i$.

Without using a calculator, find the three smallest positive whole number values of *n* for which $\frac{w^n}{w^*}$ is a real number. [4]

Solution	Learning Points and self mark
If a complex number is real, then:	Learning I otnis and seij mark
$\arg\left(\frac{w^n}{w^*}\right) = 0, \ \pm \pi, \ \pm 2\pi, \ \pm 3\pi, \dots$	1-mark for writing out the arguments for purely real complex number.
$n \arg(w) - \arg(w^*) = 0, \pm \pi, \pm 2\pi, \pm 3\pi, \dots$	1-mark for using result that $\arg\left(\frac{w^n}{w^*}\right) = n \arg(w) - \arg(w^*)$, or any appropriate method.
$n \arg(w) - [-\arg(w)] = 0, \pm \pi, \pm 2\pi, \pm 3\pi,$ $n \arg(w) + \arg(w) = 0, \pm \pi, \pm 2\pi, \pm 3\pi,$	
$\arg w = -\tan^{-1}\left(\frac{1}{\sqrt{3}}\right) = -\frac{\pi}{6}$	1-mark for argument of <i>w</i> .
$n\left(-\frac{\pi}{6}\right) + \left(-\frac{\pi}{6}\right) = 0, \ \pm \pi, \ \pm 2\pi, \ \pm 3\pi, \dots$ $-n - 1 = 0, \ \pm 6, \ \pm 12, \ \pm 18, \dots$	
n = 5, 11, 17	1-mark for all answers of <i>n</i> .

Question 2. (N12/I/6, parts and modified)

The complex number z is given by $z = 1 - i\sqrt{3}$.

Find the smallest positive integer *n* such that $|z^n| > 1000$. State the modulus and argument of z^n when *n* takes this value. [5]

Solution	Learning Points and self mark
use $z = 1 - i\sqrt{3}$ $\left 1 - i\sqrt{3}\right = 2$	1-mark for getting modulus of <i>z</i> .
$ z^{n} > 1000$ $ z ^{n} > 1000$ $ 1 - i\sqrt{3} ^{n} > 1000$ $2^{n} > 1000$	1-mark for using result that $ z^n = z ^n$, or any appropriate method.
n > 9.97 Smallest positive value of <i>n</i> is 10.	1-mark for correct answer.
$ z^{10} = z ^{10} = 2^{10} = 1024$ arg $z^{10} = 10$ arg $z^{10} = 10\left(-\frac{\pi}{2}\right) = -\frac{10\pi}{2}$	1-mark for getting 1024.
$=\frac{2\pi}{3}$	1-mark for getting $\frac{2\pi}{3}$.

Question 3. (N12/I/11, parts and modified)

A curve C has parametric equations

 $x = \theta - \sin \theta$, $y = 1 - \cos \theta$

where $0 \le \theta \le 2\pi$.

(i) Sketch *C*, showing clearly the features of the curve at the points where $\theta = 0$ and 2π . [2]

(ii) Without using the calculator, find the exact area of the region bounded by C and the x-axis.

[5]

$= \left[\theta - 2\sin\theta + \frac{1}{2}\left(\theta + \frac{\sin 2\theta}{2}\right)\right]_{0}^{2\pi}$ $= \left[2\pi + \frac{1}{2}(2\pi)\right] - \left[0\right]$	1-mark for correctly integrated expression.
$=3\pi$	1-mark for answer.