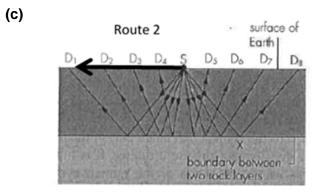

DHS		Mark Sche	eme		Syllabus
	Year 6 Pre	liminary Examinat	ions H1 Physics 2016		8866
Paper 1					
	Question Number	Key	Question Number	Key	
	1	Δ	16	C	

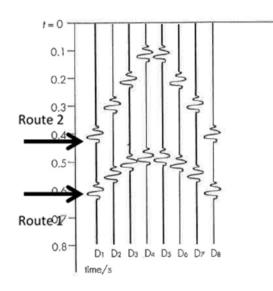
1	Α	16	С
2	В	17	D
3	С	18	С
4	Α	19	D
5	С	20	Α
6	D	21	В
7	D	22	Α
8	D	23	Α
9	Α	24	В
10	В	25	D
11	Α	26	В
12	Α	27	С
13	Α	28	D
14	С	29	В
15	С	30	D

Paper 2

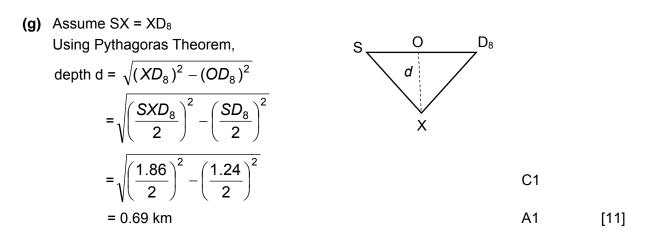
(a) 1


		(i) (ii)	Correct lengths of vector components. All horizontal components must be of the same length vertical component of A should be zero vertical component of B is downwards and less than that at S	B1 B1 B1 B1	
	(b)	(i) (ii)	correct shape of the graph (parabola), max at mid point correct shape at maximum height, min value of KE is not zero	B1 B1 B1	[7]
2	(a)	0 =	ly conservation of momentum (0.500 X 3.8) – (0.310 X <i>v</i>) 6.1 m s ⁻¹	C1 A1	
	(b)	=	Δ <i>p/Δt</i> (0.500 x 3.8)/0.25 7.6 N	C1 C1 A1	[5]
3	(a)	qua wei	ss is the property of a body resisting changes in motion / ntity of matter in a body/ measure of inertia to change in motion ght is the force due to gravitational field/ force due to gravity / e due to gravitational force	B1 B1	
	(b)	(i)	Constant horizontal speed, net force in the horizontal direction is zero Resistive force = $F \cos\theta$ = 300 cos(30°) = 260 N	M1 A1	
		(ii)	vertical direction \rightarrow 300sin(30°) + contact force = mg Contact force = (50 x 9.81) - 300sin(30°) = 340 N	M1 A1	[6]
4	(a)	(i)	constant phase difference	B1	
		(ii)	wavelength estimate: 550 to 700 nm Separation = <i>λD</i> / <i>a</i> = (650 x 10 ⁻⁹ x 2.4) / (0.86 x 10 ⁻³)	C1	
			= 1.8 mm	A1	

(iii) dark fringes are brighter as amplitude no longer completely cancel A1


		bright fringes are less bright as resultant amplitude is smaller	A1	
	(iv)	shorter wavelength for blue, so separation is less	A1	
(b)	(i)	160 cm	A1	
	(ii)	$v = f\lambda,$ = 20 x 1.6		
		$= 32 \text{ m s}^{-1}$	A1	
	(iii)	progressive wave reflected at the fixed ends incident and reflected (two) waves travelling in	B1	
		opposite directions interfere	B1	
		speed is the speed of one of these waves	A1	[11]

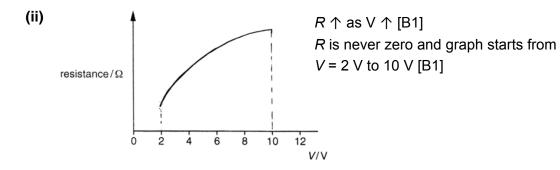
5	(a)	Oscillation of the molecules of the wave is along the direction of transfer of energy of the wave.	B1
	(b)	$A = \rho v^2 = (2700)(3100)^2 = 2.59 \times 10^{10}$	A1


Units of
$$A = (kg m^{-3})(m s^{-1})^2 = kg m^{-1} s^{-2} = Pa$$
 A1

(d)

- (e) The waves should be weaker after traveling longer distances, B1
 hence direct waves should show larger amplitude than reflected waves. B1
- (f) 1. SD_8 , t = 0.4 s, so $SD_8 = (3.1)(0.4) = 1.24$ km A1 2. SXD_8 , t = 0.6 s, so $SXD_8 = (3.1)(0.6) = 1.86$ km A1

- 6 (a) Electromotive force of a source is the work done per unit charge when non-electrical energy is transferred into electrical energy when the charge is moved round a complete circuit. B1 Potential difference between two points in a circuit is the work done per unit charge when electrical energy is transferred into non-electrical energy when the charge passes from one point to the other.
 - (b) (i)


R/Ω	$(R + r) / \Omega$	<i>I</i> / A	P/W
2.0	4.0	1.5	4.5
3.0	5.0	1.2	4.3
4.0	6.0	1.0	4.0

Both currents correct [B1] and all three powers correct [B1]

(ii)	suitable smooth curve	B1
(iii)	Maximum at $R = 2 \pm 0.2 \Omega$	B1
(iv)	All the power is wasted as heat in the internal resistance No power/energy to external resistor	B1 B1

(v)	1. Total power supplied = 6 x 1.5 = 9.0 W	C1	
	Efficiency = $4.5/9.0 = 0.5$	A1	
	2. <i>R</i> for maximum fraction = 10 Ω	A1	[9]

(c) (i) Read the values of potential difference (*V*) and current (*I*) from graph, resistance *R* is the ratio of *V* to *I*, R = V/I. B1

	(iii)	The battery may have internal resistance, so terminal p.d. smaller than 12 V Resistance of lamp is comparable to the maximum resistance of va By potential divider, it is not possible to get p.d. of 0V across lamp.		or, [5]
(d)	(i)	One correct route from P to Q Second correct route from P to Q	B1 B1	
	(ii)	any two from: Independent switching/ if one fails the others work Many sockets can be attached to the ring Extra sockets can be put in with little difficulty Fault at one side will still leave circuit working Large currents can be supplied by two cables	B2	[4]
(a)	.,	region of space / area where a force is experienced by current-carrying conductor/ moving charge/ permanent magnet particle must be moving	B1 M1 A1 M1	
(b)	(i) (ii)	With component of velocity normal to magnetic field electrons in rod moves to right, apply FLH rule, current to left, field is out of paper, magnetic force on electrons is upwards. B is at a higher potential. It is a complete circuit. Current flows from B through lamp to A Lamp lights up.	A1 M1 A1 M1 A1	[5]
(c)	(ii)	force = $0.40 \times 10^{-3} \times 9.81$ = $3.9 \times 10^{-3} \text{ N}$ Force on magnet (balance) is upwards By Newton's 3 rd law, force on rod is downwards By FLH, pole P is a south pole. F = BIL	A1 B1 M1 A1	
		3.9 x 10 ⁻³ = (30.0 x 10 ⁻³) <i>I</i> (0.10) <i>I</i> = 1.3 A	C1 A1	[6]

7

(d)	(i)	at least 4 straight horizontal lines of equal spacing	B1	
		with arrows pointing to the left.	B1	
	(ii)	anticlockwise moments = clockwise moments about XY		
		(0.40)(<i>I</i>)(0.06) x (0.6SR) = (0.3 x 9.81) x (0.4SR)	C1	
		<i>I</i> = 81.75 A	C1	
		r = e.m.f. / $I = 2.0 / 81.75 = 0.024 \Omega$	A1	[5]

(ii)1.
$$p = \frac{h}{\lambda} = \frac{6.63 \times 10^{-34}}{6.50 \times 10^{-12}}$$
 C1

$$= 1.02 \times 10^{-22} \text{ N s}$$

2. Energy =
$$\frac{hc}{\lambda} = \frac{(6.63 \times 10^{-34})(3.00 \times 10^8)}{(6.50 \times 10^{-12})}$$
 C1
= 3.06 × 10⁻¹⁴ J A1

(iii)1.
$$0.34 \times 10^{-12} = (6.63 \times 10^{-34}) / (9.11 \times 10^{-31} \times 3.0 \times 10^8) \times (1 - \cos \theta)$$
 C1
 $\theta = 30.7^{\circ}$ A1

2. deflected electron has energy
this energy is derived from the incident photonM1
A1
B1

(iv)
$$\Delta E = \frac{1}{2}mv^{2}$$
$$\frac{\left(6.63 \times 10^{-34}\right)\left(3 \times 10^{8}\right)}{\left(6.50 \times 10^{-12}\right)} - \frac{\left(6.63 \times 10^{-34}\right)\left(3 \times 10^{8}\right)}{\left(6.84 \times 10^{-12}\right)} = \frac{1}{2}\left(9.11 \times 10^{-31}\right)v^{2} \quad \text{C1}$$
$$v = 5.78 \times 10^{7} \text{ m s}^{-1} \quad \text{A1}$$

#

B1

A1