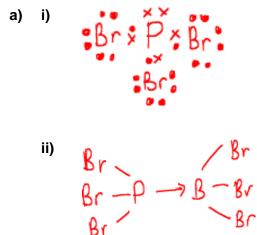
- 1 (a) $5Fe^{2+} + MnO_4^- + 8H^+ \rightarrow 5Fe^{3+} + Mn^{2+} + 4H_2O$
 - (b) If volume of titre is assumed to be 25 cm^3 : Amount of KMnO₄ required = $0.5 \times 0.025 = 0.0125$ mol Amount of Fe²⁺ = $0.0125 \times 5 = 0.0625$ mol Mass of Fe²⁺ = $0.0625 \times 55.8 = 3.4875$ g Maximum mass of tablet = (100/80) x 3.4875 = 4.36 g Minimum mass of tablet = (100/90) x 3.4875 = 3.88 g

[2]

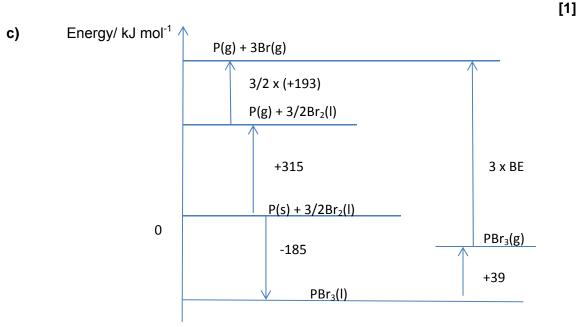
[1]

- (c) Weigh a dry and clean weighing bottle.
 - Add iron supplement tablet into the weighing bottle and weigh the bottle + tablet.
 - Tip the tablet into a small beaker and reweigh the emptied weighing bottle to determine the actual mass of tablet used.
 - Add excess dilute sulfuric acid to the small beaker containing the tablet.
 - Stir with a glass rod to dissolve the tablet.
 - Transfer the solution with several washings into a clean 250 cm³ volumetric flask.
 - Make up to the mark with distilled water.


(d)

- Stopper the volumetric flask and shake well to obtain a homogeneous solution.
- Pipette 25.0 cm³ of the iron solution prepared into a 250 cm³ conical flask.
- Fill the burette the standard solution of KMnO₄.
- Titrate the iron solution against KMnO₄ from the burette, with continuous swirling.
- Stop when one drop of solution from the burette causes a colour change from colourless to pale pink.

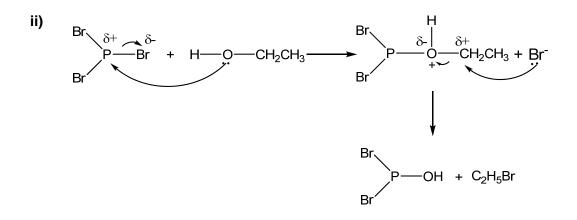
[6]


Pale blue ppt formed in	Cu ²⁺
Pale blue ppt formed in	Cu ²⁺
Pale blue ppt formed in	Cu ²⁺
colourless solution.	
White ppt formed. [1/2]	Ba ²⁺
^	Vhite ppt formed. [½]

[3]

 $PBr_3(I) + 3H_2O(I) \rightarrow H_3PO_3(aq) + 3HBr(aq)$

iii) Both compounds are simple covalent. Phosphorus tribromide is polar with permanent dipole-permanent dipole while boron tribromide is non polar with induced dipole-induced dipole. More energy required to break the stronger pd-pd interactions of phosphorus tribromide so PBr₃ has a higher boiling point.

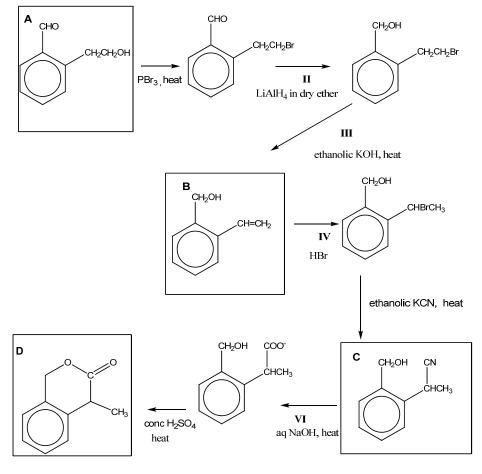

 $BE = +250 \text{ kJmol}^{-1}$

[4]

d) i) Nucleophilic substitution

2

b)



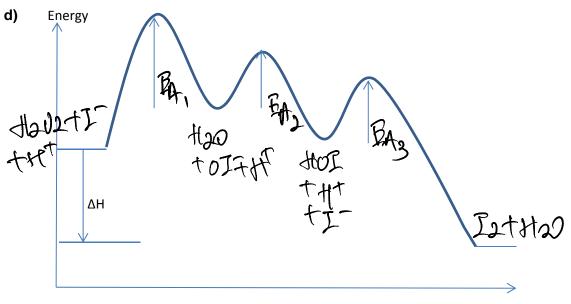
iii) To form C(CH₃)₃Br would require the starting alcohol to be a tertiary alcohol which is not feasible for a SN2 reaction due to steric hindrance/large bulky groups/electron donating methyl groups.

(ii)

a) $H_2O_2 + 2I^- + 2H^+ \rightarrow 2H_2O + I_2$

From graph 1, since graph is a straight line graph, rate of reaction is constant when [H⁺] changes. Therefore zero order wrt [H⁺].
From graph 1, when [I⁻] is constant, [H₂O₂] is doubled, rate (gradient) is doubled from 0.02/2s to 0.02/s.

Therefore first order wrt $[H_2O_2]$.


From graph 2,

When $[H^+] = 1.0 \text{ mol } dm^{-3}$, $[H_2O_2] = 2.0 \text{ mol } dm^{-3}$, $t_{1/2}$ is constant at $\frac{1}{2}$ t. Therefore first order wrt $[I^-]$.

Rate = k [H₂O₂] [I⁻] units for k: mol⁻¹dm³s⁻¹

c) Mechanism A.

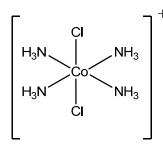
Step 1 is the rate determining step as the stoichiometric coefficient of the reactants matches the power of the $[H_2O_2]$ and $[I^-]$ in the rate equation.

Reaction Pathway

[Total: 11 marks]

4 a) i)

		П	CI
25.2	24.0	5.1	45.7
0.428	1.71	5.1	1.29
1	4	12	3
		0.428 1.71 1 4	0.428 1.71 5.1 1 4 12


n (CoN₄H₁₂Cl₃) = 233.4,

3

molecular formula = $CoN_4H_{12}CI_3$. Ligands: NH_3 and CI^-

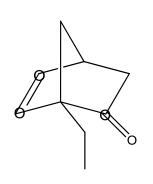
ii) 0.01 mol of P contains 9.965 x 10⁻³ mol of free chloride ions
1mol of P contains 1 mol of free chloride ions

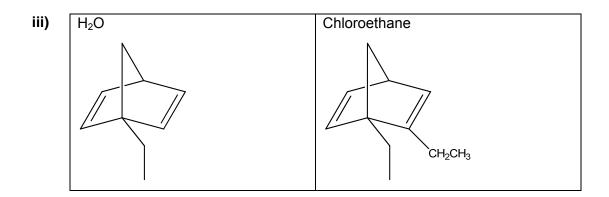
formula of **P** : $[Co(NH_3)_4Cl_2]^+ Cl^-$

[6]

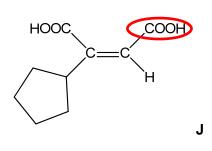
b) i) Catalyst

The reaction becomes faster when it is added as seen from the vigorous effervescences

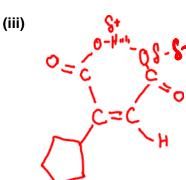

The solution turns from pink to green and back to pink colour as the catalyst is regenerated


- 4c) i) Violet
 - ii) In the isolated gas phase, the d orbitals of the Co²⁺ is degenerate. In the complex, partially filled 3d orbitals split into two groups with a small energy gap between them. When light shines, the complex absorbs light energy from the visible light spectrum to promote electrons from the lower to the higher energy group, (d-d transition). The light not absorbed will be reflected and seen as the colour of the complex.

[7] [Total: 13marks]


5 a) i) Number of chiral centers = 2

ii)



iv) Reagents and conditions: KMnO₄, aq. H₂SO₄, heat
Observations: S decolourise purple KMnO₄ but purple KMnO₄ remains in R
*K₂Cr₂O₇ accepted.

- (i) It is further from the electron donating cyclopentane group which destabilise the carboxylate anion.
- (ii) Geometric isomer/ cis-trans

Anion after dissociation is stabilised by intra hydrogen bonding of the carboxylate group with –OH

[5] [Total: 11 marks]

[6]

~~~END~~~

(b)

5 (b)