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Since P1 is true and Pk is true  Pk+1 is true, by the principle of Mathematical Induction, Pn is true 

for all n  
+
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2(a) 
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(iii) For equation 1 1g g( ) g ( )x g x  , 2 6x  .       
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3(i) 

 
(ii) Since 

1 52 iz     and 
1 103 iz    , thus 1 4 2iz    satisfies the equation 52 iz     

and i 03 1z    . 

(iii) Note that triangle OBC is a right angle triangle. Further B lies on the locus of 52 iz    . Thus 

     
2 2 21 1 1

5 10 10
2 4 2

5 5
5

2 2

5( 1)

area  

 





 




   







  

(iv) 
1 5

sin
5

   

Thus
2


     and 

2


    . 

Hence the required range is 2.03 arg( 1.12 ) 14iz    . 
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4 (i) Let 1tany x . 

 Then    tan y x  

 Differentiate with respect to x, 
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 (ii) From graph,  
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 (iii) Comparing area of rectangles with area under curve for 0 x n  , 
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 Alternative: Use Method of Difference using (i) result 
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5 i) A random sample refers to the sample is obtained by selecting 50 students from 500 students in 

such a way that each of the 500 students will have an equal chance of being selected. Each 

selection is independent. 

 

ii) To obtain a sample of 50 students using stratified random sampling, we will determine the 

sample size of the method of transport such that the sample size of each method of travel is 

proportional to the size of each method of travel in the school. 

 

 Car   Public transport On foot 

Sample 

Size 

30% of 50 

(=15 ) 

50% of 50 

(= 25) 

20% of 50 

(= 10) 

 

Then conduct simple random sampling from each method of travel.  These simple random 

samples from the different method of travel groups are combined to form the overall stratified 

random sample of 50 students. 

 

6 Let X be the weight of the chicken sold in the supermarket.
2~ N( , )X    
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Using GC,  
1.8 
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=1.0364 ------(2) 

Solving equation (1) and (2), 
1.36  and  =0.426      

  

 

7 (i) The calls may not be independent as people may be calling in to lodge a complaint on bad 

service rendered by the company. 

 (ii) Since 60 50n    and  60 0.08 4.8 5np    , 

  ~ Po 4.8C . 

    P 6 1 P 5 0.349C C      (3 s.f.) 
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 (iii)  ~ 60,0.08C B  

 Since 80n   is large, 
4.416

~ 4.8,
80

C N
 
 
 

 approximately by CLT. 

  5 0.197P C    (3 s.f.) 

  

8 
(i) required probability = 
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(ii)  
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P(father born in Asia  mother born in UK)
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OR 

 

Let A be the event at least one parent in UK 

Let B be the event at least one parent in Europe 
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9(a) Let   be the mean of X. To test 
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Thus the least value of level of significance is 9.69%. 
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9(b) 
 

22 10
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9
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Thus the required set of values of x  is (0,454.57] [455.43, )  . 
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10(i) 

 

10(ii) The scatter diagram shows that S is decreasing at a decreasing rate as t increase. Further, if a linear 

model is used, there will be a negative amount of sleep after a certain age, which is impossible. 

Thus a linear model is inappropriate. 

10(iii) Since S is decreasing at a decreasing rate as t increase and approaching a value, the proposed 

model may be appropriate. 

10(iv) Using GC, ˆˆ 7.51, 14.8a b   

10(v) Since t =50 is out of the given data range, it will be inappropriate to use the model due to 

extrapolation.  
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11 (i) No of ways = 610 1000000  

(ii) No of possible 3 identical digits on the left = 10 

No of possible 3 identical digits on the right and is different from the left = 9 

Total no of ways = 10 x 9 = 90 

(iii)No of possible ways in the other 2 digits = 
6

15
2

 
 

 
 

Total no of ways = 15 x 6! = 10800 

(iv) Case 1: LHS – all 3 identical 

No of ways = 10 x 9 x 9 x 9 = 7290 

 

Case 2  : LHS – 1pair identical 

No of ways = 3
10 3!

2! 8 138240
2 2!

 
   

 
 

Case 3  : LHS – all different 

No of ways = 3
10

3! 7 246960
3

 
   

 
 

Total no of ways = 392490 

12 (i) Incidences of people joining the self-checkout queue occur randomly and independently. 

 The average rate of people joining the self-checkout queue is constant over the chosen time 

interval. 

 

 (ii) Let X be the number of people joining the self-checkout queue in 4 minutes. Then 

 ~ Po 6X . 

      P 5 10 P 10 P 4J J J       

   0.672  (3 s.f.) 

 

 (iii) Let J be the number of people joining the self-checkout queue in an hour. Then 

 ~ Po 90J . 

 Since 90 10   ,  ~ 90,90J N  approximately. 

    . .P 60 80 P 60.5 79.5 0.133c cJ J       (3 s.f.) 
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 (iv) Let L be the number of people leaving the self-checkout queue in an hour. Then 

 ~ Po 78L . 

 Since 78 10   ,  ~ 78,78L N  approximately. 

 

 Assume that J and L are independent Poisson random variables. Then 

     Var Var Var 168J L J L     

 Hence  ~ 12,168J L N  approximately. 

    . .P 20 P 19.5 0.281c cJ L J L       (3 s.f.)  

 

 


