Qn Solution 1 Let P_n be the statement $\sum_{n=1}^{n} \cos(2r\theta) = \frac{\sin(2n+1)\theta - \sin\theta}{2\sin\theta}$ for $n \in \square^+$ When n = 1, LHS = $\sum_{r=1}^{1} \cos(2r\theta) = \cos 2\theta$ RHS = $\frac{\sin 3\theta - \sin \theta}{2\sin \theta} = \frac{2\cos 2\theta \sin \theta}{2\sin \theta} = \cos 2\theta$ $\therefore P_1$ is true. Assume that P_k true for some $k \in \mathbb{Z}^+$, $k \ge 1$. i.e. $\sum_{r=1}^{k} \cos(2r\theta) = \frac{\sin(2k+1)\theta - \sin\theta}{2\sin\theta}$ For n = k + 1, we want to prove $\sum_{n=1}^{k+1} \cos(2r\theta) = \frac{\sin(2k+3)\theta - \sin\theta}{2\sin\theta}$ LHS = $\sum_{r=1}^{k+1} \cos(2r\theta) = \sum_{r=1}^{k} \cos(2r\theta) + \cos(2k+2)\theta$ $=\frac{\sin(2k+1)\theta - \sin\theta}{2\sin\theta} + \cos(2k+2)\theta$ $=\frac{\sin(2k+1)\theta-\sin\theta+2\cos(2k+2)\theta\sin\theta}{\sin\theta}$ $2\sin\theta$ $=\frac{\sin(2k+1)\theta-\sin\theta+\sin(2k+3)\theta-\sin(2k+1)\theta}{2\sin\theta}$ $=\frac{\sin(2k+3)\theta-\sin\theta}{2\sin\theta}$ $\therefore P_k$ is true $\Rightarrow P_{k+1}$ is true Since P_1 is true and P_k is true $\Rightarrow P_{k+1}$ is true, by the principle of Mathematical Induction, P_n is true for all $n \in Z^+$.

$$\sum_{r=1}^{n} \cos(r\pi) = \sum_{r=1}^{n} \cos\left(2r \cdot \frac{\pi}{2}\right) = \frac{\sin\left(2n+1\right)\frac{\pi}{2} - \sin\frac{\pi}{2}}{2\sin\frac{\pi}{2}} = \frac{(-1)^{n} - 1}{2}$$

Qn	Solution
2(a)	
	Let $y = \frac{2x-1}{2x-2}$
	y(2x-2) = 2x-1
	x(2y-2) = 2y-1
	$x = \frac{2y - 1}{2y - 2}$
	$x^{-}2y-2$
	$\therefore f^{-1}: x \to \frac{2x-1}{2x-2}, x < 1$
	$f(x) = f^{-1}(x)$
	$\therefore f^{-1}: x \to \frac{2x-1}{2x-2}, x < 1$ $f(x) = f^{-1}(x)$ $\Rightarrow f^{2}(x) = x$ $f^{1965}(0.5) = 0$
(b)	(i), (ii)
	<i>y</i> ↑
	$y = g^{-1}(x)$ $y = x$ $(16, 6)$ $y = g(x)$ $(0, 2)$ $(2, 0)$ $(2, 0)$ $(2, 0)$ $(0, 1)$ $(16, 6)$ $(16,$
	(iii) For equation $g^{-1}g(x) = gg^{-1}(x), 2 \le x < 6$.

Qn	2015 NYJC JC2 Prelim Exam 9740/2 Solutions Solution
3(i)	$\begin{array}{c} Im \\ D(2,4) \\ \theta \\ B(3,1) \\ O \\ A(2,-1) \\ C(4,-2) \end{array} $ Re
(ii)	Since $ z_1 - 2 + i = \sqrt{5}$ and $ z_1 - 3 - i = \sqrt{10}$, thus $z_1 = 4 - 2i$ satisfies the equation $ z - 2 + i = \sqrt{5}$ and $ z - 3 - i = \sqrt{10}$.
(iii)	Note that triangle <i>OBC</i> is a right angle triangle. Further <i>B</i> lies on the locus of $ z-2+i = \sqrt{5}$. Thus $area = \frac{1}{2}\pi(\sqrt{5})^2 + \left[\frac{1}{4}\pi(\sqrt{10})^2 - \frac{1}{2}(\sqrt{10})^2\right]$ $= \frac{5\pi}{2} + \frac{5\pi}{2} - 5$ $= 5(\pi - 1)$
(iv)	$\theta = \sin^{-1} \frac{\sqrt{5}}{5}$ Thus $\alpha = -\frac{\pi}{2} + \theta$ and $\beta = -\frac{\pi}{2} - \theta$. Hence the required range is $-2.03 \le \arg(z - 2 - 4i) \le -1.11$.

Qn	Solution
4	(i) Let $y = \tan^{-1} x$.
	Then $\tan y = x$
	Differentiate with respect to x ,
	_
	$\sec^2 y \frac{\mathrm{d} y}{\mathrm{d} x} = 1$
	$(1 + \tan^2 y)\frac{dy}{dx} = 1$
	$(1 + \tan y) \frac{d}{dx} = 1$
	dy 1 (chown)
	$\frac{\mathrm{d} y}{\mathrm{d} x} = \frac{1}{1+x^2} \text{ (shown)}$
	(ii) From graph,
	area of shaded rectangle < area under curve for $n-1 \le x \le n$.
	$\frac{1}{1+n^2} \left[n - (n-1) \right] < \int_{-\infty}^{n} \frac{1}{1+r^2} dx$
	$1 + n$ $0 = n + 1 + \lambda$
	$\frac{1}{1+n^2} < [\tan^{-1}(x)]_{n-1}^n$
	$1 \pm n$
	$\frac{1}{1+n^2} < \tan^{-1}(n) - \tan^{-1}(n-1) \text{(show)}$
	1+n
	(iii) Comparing area of rectangles with area under curve for $0 \le x \le n$,
	$\frac{1}{1+1^2} + \frac{1}{1+2^2} + \frac{1}{1+3^2} + \dots + \frac{1}{1+n^2} < \int_0^n \frac{1}{1+x^2} \mathrm{d}x$
	$\frac{1}{2} + \frac{1}{5} + \frac{1}{10} + \ldots + \frac{1}{1 + m^2} < \left[\tan^{-1} (x) \right]_0^n$
	$2 \ 5 \ 10 \ 1+n$
	$\frac{1}{2} + \frac{1}{5} + \frac{1}{10} + \dots + \frac{1}{1 + n^2} < \tan^{-1}(n)$
	Alternative: Use Method of Difference using (i) result
	$y = \frac{1}{1 + (x + 3)^2}$
	1+(x+3)
	$(x+3)^2 = \frac{1}{y} - 1$
	$x+3 = -\sqrt{\frac{1}{y}-1}$ (rejected) or $x+3 = \sqrt{\frac{1}{y}-1}$
	$\int \frac{x+3}{y} = -\sqrt{\frac{y}{y}} = 1$ (rejected) of $x+3 = \sqrt{\frac{y}{y}}$
	$x = -3 + \sqrt{\frac{1}{v} - 1}$
	Required volume $= \pi \int_{\underline{1}}^{\underline{1}} x^2 dy$
	J_{10}^{-1}
	$-\int_{-1}^{1} \left(2 + \sqrt{1-1} \right)^2 dx$
	$=\pi \int_{\frac{1}{10}}^{\frac{1}{2}} \left(-3 + \sqrt{\frac{1}{y} - 1}\right)^2 dy$
	≈ 2.5998
	$= 2.60 \text{ units}^3 \text{ or } 0.828 \pi$

0			3 C2 I I CHIII EXam 7740				
Qn 5	Solution						
5	i) A random sample refers to the sample is obtained by selecting 50 students from 500 students in						
	such a way that each of the 500 students will have an equal chance of being selected. Each						
	selection is ind						
		opendent.					
	··· • •	1 6 70	1	1 12	·11 1 / · /1		
		-	udents using stratified ra				
			ransport such that the sa		method of travel is		
	proportional to	the size of each m	ethod of travel in the sch	ool.			
		Car	Public transport	On foot	ן		
	Commla				-		
	Sample	30% of 50	50% of 50	20% of 50			
	Size	(=15)	(= 25)	(= 10)			
	samples from		sampling from each m nod of travel groups are				
6	Let X he the w	eight of the chicker	n sold in the supermarket	$X \sim N(\mu \sigma^2)$			
		eight of the chicke	n solu in the supermarket	$\Lambda \sim \Pi(\mu, 0)$			
	P(X < 1) = 0.2						
	$\int (X-\mu) = 1-$	$-\mu$) o co					
	$P\left(\frac{X-\mu}{\sigma} < \frac{1-\mu}{\sigma}\right)$	$\frac{1}{\tau}$ = 0.20					
	`	/					
	$\left P\left(Z < \frac{1-\mu}{\sigma}\right) \right $	= 0.20					
	Using GC, $\frac{1}{\alpha}$	$\frac{-\mu}{\sigma} = -0.84162$ ((1)				
	$P\left(\frac{X-\mu}{\sigma} > \frac{1.8}{\sigma}\right)$	$\left(\frac{3-\mu}{\sigma}\right) = 0.15$					
	$1-P\left(Z < \frac{1.8-\sigma}{\sigma}\right)$	$\left(\frac{\mu}{2}\right) = 0.15$					
	$P\left(Z < \frac{1.8 - \mu}{\sigma}\right)$	$\left(\right) = 0.85$					
	Using GC, $\frac{1.8}{2}$	$\frac{3-\mu}{\sigma} = 1.0364$	-(2)				
	Solving equati	on (1) and (2),					
	$\mu = 1.36$ and						
-	(•) 701 1	1 .1 . 1	1 4 1 1	11	1 ' , 1 1		
7		•	pendent as people may be	e calling in to lodge	a complaint on bad		
	service	rendered by the co	ompany.				
	(ii) Since <i>i</i>	n = 60 > 50 and np	=60(0.08)=4.8<5,				
	$C \sim Pc$	o(4.8).					
	P(C >	$6) = 1 - P(C \le 5) =$	(0.349 (3 s f))				
	- 2)	c, i i (c = 5) -	0.017 (0.0.1.)				

Solution
(iii) $C \sim B(60, 0.08)$
Since $n = 80$ is large, $\overline{C} \sim N\left(4.8, \frac{4.416}{80}\right)$ approximately by CLT.
$P(\bar{C} > 5) = 0.197 $ (3 s.f.)
(i) required probability = $\frac{45}{140} = \frac{9}{28}$
140 28
P(father born in Asia mother born in UK)
$=\frac{P(\text{father born in Asia} \cap \text{mother born in UK})}{P(\text{mother born in UK})}$
$=\frac{\frac{8}{140}}{\frac{60}{5}}=\frac{2}{15}$
$=$ $\underline{60}$ $=$ $\overline{15}$
140
(iii) P(parent born in either UK or Europe) = $1 - P(both parents born in Asia)$
$=1-\frac{45}{140}=\frac{19}{28}$
OR
OK .
Let A be the event at least one parent in UK
Let <i>B</i> be the event at least one parent in Europe
$\operatorname{Req'd prob.} = P(A) + P(B) - P(A \cap B)$
80 38 23 19
$-\frac{140}{140}+\frac{140}{140}-\frac{140}{28}$
Let μ be the mean of X. To test
$H_0: \mu = 455$
$H_1: \mu \neq 455$
Level of Significance: $\frac{\alpha}{100}$
Perform Z test Calculation: p-value = 0.096875
-
For sufficient evidence to reject H_0 , p – value $< \frac{\alpha}{100}$. Thus
$\frac{\alpha}{100} > 0.096875$
$\begin{array}{c} 100 \\ \Rightarrow \alpha > 9.6875 \end{array}$
Thus the least value of level of significance is 9.69%.

Qn	Solution	Tenni Exam 7740/2 Solutions
9(b)	$s^{2} = \frac{10}{9} (0.56921)^{2} = 0.360$ $H_{0}: \mu = 455$ $H_{1}: \mu \neq 455$ Level of Significance: 0.05 Perform <i>t</i> test	
	Reject H_0 if <i>p</i> -value < 0.05 If $\bar{x} \ge 455$ $2P\left(\bar{X} > \bar{x}\right) < 0.05$ $\Rightarrow P\left(T > \frac{\bar{x} - 455}{s / \sqrt{10}}\right) < 0.025$ Since $P(T > 2.2622) = 0.025$, thus $\frac{\bar{x} - 455}{s / \sqrt{10}} > 2.2622$ $\Rightarrow \bar{x} > 455.4292$ If $\bar{x} < 455$ $2P\left(\bar{X} < \bar{x}\right) < 0.05$ $\Rightarrow P\left(T < \frac{\bar{x} - 455}{s / \sqrt{10}}\right) < 0.025$ Since $P(T < -2.2622) = 0.025$, thus $\frac{\bar{x} - 455}{s / \sqrt{10}} < -2.2622$ $\Rightarrow \bar{x} < 454.5707$	Reject H_0 if $ T_{calc} > t_{0.025}(9) = 2.2622$ Since H_0 is rejected, $\left \frac{\bar{x} - 455}{s/\sqrt{10}}\right > 2.2622$ $\Rightarrow \bar{x} < 455 - 2.2622 \frac{s}{\sqrt{10}}$ or $\bar{x} > 455 + 2.2622 \frac{s}{\sqrt{10}}$ $\Rightarrow \bar{x} < 454.5707$ or $\bar{x} > 455.4292$
	Thus the required set of values of \overline{x} is	(0,454.57]∪[455.43,∞).

Qn	Solution								
-								1	
10(i)									
	14								
	13								
	2 12								
	Jo 11	×							
	Y 12 Y								
	9 10		×		P				
	9				X				
	8			×					
						< x			
	7	5	10	15	20	25	30		
				Age,	t				
10(ii)	The scatter dia	agram sho	ows that	t S is de	ecreasing a	at a decre	asing ra	ate as t increase. Further, if a	line
					ve amoun	t of sleep	o after a	certain age, which is impos	ssibl
	Thus a linear i	model is in	nappro	priate.					
10(iii)	Since S is de	creasing a	at a de	creasin	g rate as	t increase	e and a	pproaching a value, the pro	pos
	model may be	appropria	ate.						
10(iv)	Using GC, \hat{a} =	$=\overline{7.51}, \hat{b}$	=14.8						
10(v)		out of the	given	data rai	nge, it will	be inapp	propriate	e to use the model due to	
	extrapolation.								
	1								

2015 NYJC JC2 Prelim Exam 9740/2 Solutions

Qn	Solution							
11	(i) No of ways = $10^6 = 1000000$							
	(i) No of possible 3 identical digits on the left = 10							
	No of possible 3 identical digits on the right and is different from the left = 9							
	Total no of ways = $10 \times 9 = 90$							
	(iii)No of possible ways in the other 2 digits = $\begin{pmatrix} 6 \\ 2 \end{pmatrix} = 15$							
	Total no of ways = $15 \times 6! = 10800$ (iv)Case 1: LHS – all 3 identical							
	No of ways = 10 x 9 x 9 x 9 = 7290							
	Case 2 : LHS – 1pair identical							
	No of ways = $\binom{10}{2} \frac{3!}{2!} \cdot 2! \cdot 8^3 = 138240$							
	Case 3 : LHS – all different							
	No of ways = $\binom{10}{3} \cdot 3! \cdot 7^3 = 246960$							
	Total no of ways = 392490							
12	(i) Incidences of people joining the self-checkout queue occur <i>randomly</i> and <i>independently</i> . The <i>average rate</i> of people joining the self-checkout queue is <i>constant over the chosen time interval</i> .							
	(ii) Let X be the number of people joining the self-checkout queue in 4 minutes. Then $X \sim Po(6)$.							
	$P(5 \le J \le 10) = P(J \le 10) - P(J \le 4)$							
	= 0.672 (3 s.f.)							
	(iii) Let <i>J</i> be the number of people joining the self-checkout queue in an hour. Then $J \sim Po(90)$.							
	Since $\lambda = 90 > 10$, $J \sim N(90, 90)$ approximately.							
	P(60 < J < 80) $\xrightarrow{c.c.}$ P(60.5 < J < 79.5) = 0.133 (3 s.f.)							

Qn	Solut	Solution						
	(iv)	(iv) Let <i>L</i> be the number of people leaving the self-checkout queue in an hour. Then						
		$L \sim \text{Po}(78).$						
	Since $\lambda = 78 > 10$, $L \sim N(78, 78)$ approximately.							
	Assume that J and L are <i>independent</i> Poisson random variables. Then							
	$\operatorname{Var}(J-L) = \operatorname{Var}(J) + \operatorname{Var}(L) = 168$							
		Hence $J - L \sim N(12, 168)$ approximately.						
		$P(J-L \ge 20) \longrightarrow P(J-L > 19.5) = 0.281 \ (3 \text{ s.f.})$						