Cepartin Int

Year 4 Mathematics 2 Applications of Integration - Kinematics Supplementary Worksheet

 Name : _______(
)
 Class : ______
 Date : ______

1 A particle starts from point *O* and moves in a straight line so that its displacement, *s* cm, from *O*, *t* seconds after leaving *O*, is given by $s = t(t-6)^2$.

Obtain an expression for the velocity of the particle in terms of t.

Hence, determine the value of t when the particle first comes to instantaneous rest and find the acceleration at this instant. The particle is next at O when t = T. Find

- (i) the value of T,
- (ii) the distance travelled from t = 0 s to t = T.
- 2 The height, h m, of a stone t seconds after it has been thrown vertically upwards from ground level is given by $h = 24t 3t^2$. Find
 - (i) its velocity after 3 seconds,
 - (ii) the maximum height reached,
 - (iii) the time of the flight.
- 3 A particle *P* starts at a point 3m away from *O* and travels in a straight line so that its velocity $v \text{ ms}^{-1}$ is given by $v = 9t 3t^2$ where *t* is the time in seconds measured from the start of the motion. Calculate
 - (i) its acceleration when t = 1,
 - (ii) the maximum velocity attained by the particle,
 - (iii) the distance of *P* from *O* when it comes to instantaneous rest,
 - (iv) the total distance travelled by P in the first 4 seconds.
- 4 A particle moves in a straight line so that, at time *t* seconds after leaving a fixed point *O*, its velocity, $v \text{ m s}^{-1}$, is given by $v = \frac{1}{2} 2e^{-\frac{1}{2}t}$.
 - (a) Find
 - (i) the initial acceleration of the particle,
 - (ii) the value of t when the particle is instantaneously at rest,
 - (iii) the distance of the particle from O when t = 2.
 - (b) (i) Sketch the velocity-time curve for $t \ge 0$, indicating the coordinates of the points of intersection with the axes.
 - (ii) Find the distance travelled during the third second.
- 5 A particle starts from a point *O* and moves in a straight line with a velocity *v* m/s given by $v = t + \sin 2t$ where *t* seconds is the time after leaving *O*.
 - (i) Find an expression for the displacement of the particle from O in terms of t,
 - (ii) Calculate the distance travelled by the particle when $t = \frac{\pi}{2}$ and its acceleration at this instant.

6 A particle X moves along a horizontal straight line so that its displacement, s m, from a fixed point O, t seconds after motion has begun, is given by $s = 28 + 4t - 5t^2 - t^3$. Obtain expressions, in terms of t, for the velocity and acceleration of X, and state the initial velocity and the initial acceleration of X.

A second particle Y moves along the same horizontal straight line as X, and starts from O at the same instant that X begins to move. The initial velocity of Y is 2 m s⁻¹ and its acceleration, a m s⁻², t seconds after motion has begun, is given by a = 2 - 6t. Find the value of t at the instant when X and Y collide and determine whether or not X and Y are travelling in the same direction at this instant.

(Pass GCE 'O' Level Examination Additional Mathematics, Shinglee)

7 A particle travels in a straight line with velocity, v m/s, given by $v = t - \frac{1}{2}t^2$ where t is the

time in seconds after passing a fixed point O. Calculate

- (i) the distance from O when the acceleration is zero,
- (ii) the distance travelled by the particle during the 2nd second,
- (iii) the total distance travelled by the particle after four seconds.
- 8 The velocity, v m/s, of a particle, t seconds after passing a fixed point O, is given by $v = 3t^2 - \frac{48}{t^2}$, where $t \ge 1$. Calculate
 - (i) the acceleration of the particle when t = 2, [2]
 - (ii) the time when it is momentarily at rest,
 - (iii) the total distance moved by the particle for $1 \le t \le 3$.

[2006 / DHS EOY Y4 P1 / Q17]

[1]

[5]

[4]

9 A particle moves in a straight line so that *t* seconds after leaving a fixed point *O*, its velocity,

 $v \text{ ms}^{-1}$, is given by $v = 2 \sin t - 1$. Find

- (i) the time at which the particle first comes to instantaneous rest, [2]
- (ii) the distance travelled by the particle in the first 2 seconds.

[2008 / DHS EOY Y4 P2 / Q13]

Answer

1	v = 3 (t-6)(t-2)	m/s	$t = 2, -12 \text{m/s}^2$	(i)	6	(ii)	64 m
2(i)	6 m/s	(ii)	48 m	(iii)	8 s		
3(i)	3 m/s ²	(ii)	6.75 m/s	(iii)	16.5 m	(iv)	19 m
4(a)(i)	1 m/s^2	(ii)	2.77 s	(iii)	1.53 m	(b)(i	i) 0.0914 m
5(i)	$s = t^2 - \frac{1}{2}\cos 2t + \frac{1}$	$\frac{1}{2}$			(ii) 2.23 m		

6 Initial velocity = 4 m/s; Initial acceleration = -10 m/s; $v_y = 2t - 3t^2 + 2$; $S_y = t^2 - t^3 + 2t$ $t = \frac{7}{3}$ for collision to occur. Both X and Y are travelling in the same direction because both velocities are negative at this instant.

verseries are negative at ans instant.											
7(i)	1/3 m	(ii)	1/3 m	(iii)	4 m						
8(i)	24 m/s ²	(ii)	2 s	(iii)	28 m						
9(i)	$\frac{\pi}{6}$ s	(ii)	1.09 m								