Annota	tions used in marking		
Annotations used in marking			
BOD - Benefit of doubt			
	ECF - Error carried forward		
	POT - Powers of ten error		
IE - Ira	TE - Transfer error		
	ong physics		
ENG - C	Senerally bad english, phrasing and expression		
PP - PO	or presentation of answers		
Note: Fo	or POT and TE, we can award the M mark, not the A mark.		
Questi	on		
Q1			
(a)(i)	Value of <i>L</i> to the nearest mm in the range of 98.5–99.5 cm with unit		
(b)(i)	Measurement of θ to the nearest degree with unit.		
(b)(ii)	Percentage uncertainty in θ based on absolute uncertainty in the range of		
	2°-5°. Absolute uncertainty to 1 s.f.		
	Correct method of calculation to obtain percentage uncertainty. Percentage		
	uncertainty to 1 or 2 of		
(c)(i)	c)(i) C calculated correctly with appropriate units. Show working with correct		
substitution of values.			
(c)(ii)	n^2 ,		
	Dist straight line graph of sin A against $(-2 - n)$		
	Gradient = C		
(d)	Value of k correctly calculated and with appropriate units		
	k in the range of 15–30 N m ⁻¹		
(<u>A</u>)	Compare k from (d) together to uncertainty of A with the actual value of k		
(6)			
	Correct conclustion based on result		

[Total: 9 marks]

Q2		
(a)(i)	Value of x in the range of $48.0-52.0$ cm with unit and correct decimal place.	
(b) Six sets of readings of <i>x</i> and <i>V</i>		
	Range >= 35 cm	
	Correct column headings	
	Each column heading must contain a quantity, a unit and a separating mark where appropriate	
	Correct decimal place of raw values for <i>x</i> and <i>V</i> .	
	Correct significant figures for the calculated values of $\frac{1}{V}$ and correct calculation of $\frac{1}{V}$.	
(c)	(Graph)	
	Sensible scales must be used. Awkward scales (e.g. 3:10) are not allowed.	
	Scales must be chosen so that plotted points occupy at least half the graph	
	grid in both the x and y directions.	
	Axes must be labelled with the quantity which is being plotted.	
	(Graph) All observations to be plotted. Work to an accuracy of at least half a small square.	
	(Graph)	
	Line of best fit – even distribution of points on both sides of the line. Anomalous point should be circled and labelled on the graph. (minimum must circle it)	
	Points used to calculate the gradient must be greater than half the length of the drawn line.	
	Read-offs must be accurate to half a small square and indicated on graph.	
	Calculation of gradient must be accurate.	
	y-intercept read off accurately with correct precision, OR, calculated	
	accurately from $y = mx + c$ using one point on the line.	
	Check for shift calculated (ect for wrong gradient)	
	Check for up it read off graph	

	Determine <i>k</i> by associating
	1
	^{kE} = gradient and
	1
	E = y-intercept.
	Solve for <i>k</i> . Check for correct calculation.
	Check for units of <i>k</i> .
(d)	For a plot of $1/V$ against x, when <i>E</i> is larger, the gradient is smaller and the vertical intercept is smaller.

[Total: 13 marks]

Q3			
(a)(i)	Repeated readings for N oscillations.		
	Time taken for N oscillations, $t \ge 20.00$ s		
	$\tau - t$		
	$T = \frac{1}{N}$		
	Value of T in the range 0.50 to 1.00 s.		
(a)(ii)	Correct calculation of <i>k</i> .		
(b)	Value of y to nearest 0.001 m and in range 0.090 to 0.130 m.		
(c)	Value for <i>H</i> calculated using the readings for the highest and lowest points.		
	Evidence of repeated readings of <i>H</i> .		
(d)	Percentage uncertainty based on absolute uncertainty of at least 0.6 cm to 4		
	cm.		
	Show correct method of calculation to obtain percentage uncertainty.		
	Answer must be given to 1 or 2 sf.		
(e)	Second set of <i>y</i> and <i>H</i> recorded.		
	y within 10% of half the value in (b)		
	second <i>H</i> < first <i>H</i>		
(f)(i)	The highest and lowest positions are difficult to determine since the mass is moving too fast. The readings for the highest and lowest positions are read off by the experimenter using the metre rule. Hence <i>H</i> is inaccurate		
(f)(ii)	Use a datalogger connected to a motion sensor and place the motion sensor facing the base of the mass hanger. From the graph obtained using the datalogger, determine H difference between the lowest and highest points.		
(g)(i)	Both values of <i>c</i> correctly calculated.		
	Units for <i>c</i>		
	Given to 2 or 3 sf (depending on sf of H and y)		
(g)(ii)	Follows the least sf between <i>H</i> and <i>y</i>		
	Which quantity to follow $-H$ or y (or both have the same sf)		
(g)(iii)	(1) Find percentage difference in $k = (c_{\text{larger}} - c_{\text{smaller}}) / c_{\text{smaller}} \times 100 \%$.		
	ΔH		
	(2) Find percentage uncertainty in c . Since H was calculated in (d), it is		
	ΔH		
	assumed that H is a good approximation for the uncertainty of <i>c</i> .		
	(3) If percentage difference in c > percentage uncertainty in c , experiment		
	results do not support the relationship.		
	If percentage difference in c < percentage uncertainty in c , experiment		
	results support the relationship.		

(h)	Diagram (1 m)	
	Fully labelled diagram:	
	Card attached to the base on the mass hanger using blue tac modified from Fig. 3.1. Ensure card in centralized.	
	Basic Procedure (1 m)	
	Vary the diameter of the card attached. Ensure the card's diameter is equal to or larger than the base of the mass hanger.	
	Measurement (1 m)	
	Measure the diameter of the cards. Repeat measurement by rotating card. Use metre rule to measure the diameter.	
	Analysis (1 m)	
	Plot a graph of lg <i>T</i> vs lg <i>d</i> and determine if the gradient is close to 1. Otherwise not directly proportional.	
(j)(i)	20.0 s \leq <i>t</i> \leq 40.0 s. Express to with correct unit and to 1 or 2 d.p with repeated reading.	
(j)(ii)	Correct d.p. and column headings for <i>t</i> and <i>m</i> .	
	3 sets of data including the result from (j)(i) with full range from 250g to 300g and repeated readings for t.	
(j)(iii)	Based on the three sets of data shown, as <i>m</i> increases <i>t</i> decreases.	
	[Total: 21 marks]	

ני L

In *F* against ln *l* where *-m* is the gradient and $\ln F = \ln(k \ d^4 \ h^n)$ is the vertical intercept

Mark scheme	
Diagram (1 m)	
tap metal container water h tube tube tube tube tube tube tube tube	
Diagram must include measuring cylinder, source of running water	D1
Basic procedure (3 m)	
Adjust the length of the tube (by using tube of different length) while keeping height constant	B1
Adjust the height of the water level (by adjust the flow rate of the tap) while keeping length constant	B1
Collect and measure the volume of water and the time taken for the collection and show equation $F = Q / t$	B1
Measurement (2m)	
Measure the length of the tube using a metre rule OR	M1
Measure the flow rate using a measuring cylinder and stop watch	M1
Control of Variables (1 m)	
Radius of the tube must be kept constant by using tube of the same diameter	C1
 Analysis (2 m)	
$F = \frac{k \ d^4 \ h^n}{l^m}$	A1
$\ln F = \ln(k \ d^4 \ h^n) - m \ln(l)$ when varying length,	
Plot a straight line of $\ln F$ against $\ln(l)$ where	
- <i>m</i> is the gradient and $\ln(k d^4 h^n)$ is the vertical intercept	

$F = \frac{k \ d^4 \ h^n}{l^m}$ $\omega = kr^s m^v$ $\ln F = \ln(\frac{k \ d^4}{l^m}) + n \ln(h) \text{ when varying height of the water level,}$ Plot a straight line of ln F against ln(h) where	A1
<i>n</i> is the gradient and $\ln(\frac{k d^4}{l^m})$ is the vertical intercept	
Further Details (max 2 m)	
Indicate location of metre rule inside the container when measu	ring height F1
Method to ensure tube is horizontal (eg, measure and ensure from 2 ends of the tube to the table is the same)	e the distance F1
Method to measure <i>h</i> accurately from the centre of the hole (eg diameter of hole, add half of diameter to the distance from the to the water level)	, measure F1 op of the hole
Repeated reading for the measurement of flow rate	F1
Adjust flow of water such that flow rate of water from tap is equate to keep <i>h</i> constant	al to <i>F</i> in order F1
Measure the diameter of the tube using vernier callipers (to ensort of the tube is the same)	sure the radius F1
Safety (1 m)	
Usage of tank / sink / cloth to prevent spillage onto the table	S1