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  Chapter 6 

 
 

Circular Motion 
 

 
Image credits to https://en.wikipedia.org/wiki/Singapore_Flyer#/media/File:Singapore_Flyer.JPG 

 

The Singapore Flyer is currently one of the tallest Ferris wheel in the world. Described by its operators 
as an observation wheel, it reaches 42 stories high. At a total height of 165 m (541 feet) and a 
diameter of 150 m (492.1 feet), it was the tallest Ferris wheel at its inception, 5 m (16 feet) taller than 
the previous record holder, the Star of Nanchang. The Flyer was itself surpassed in 2014 by the High 
Roller in Las Vegas, which stands at 167.6 m (550 feet) with a diameter of 158.5 m (520 feet). The 
Ain Dubai in Dubai which was launched in 2021 stood at a height of 250 m (820 feet). 
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TOPIC 6: CIRCULAR MOTION 
 
 
 
 

Circular 
Motion 

Learning Outcomes  

Students should be able to:  

Kinematics of 
uniform 
circular 
motion 

(a) express angular displacement in radians.  

(b) show an understanding of and use the concept of angular velocity to solve problems.  

(c) recall and use v = rω to solve problems.  

(d) derive, from the definitions of velocity and acceleration, equations which represent 

uniformly accelerated motion in a straight line.   

Centripetal 
acceleration  

(e) describe qualitatively motion in a curved path due to a perpendicular force, and 

understand the centripetal acceleration in the case of uniform motion in a circle.  

(f) recall and use centripetal acceleration a = rω2, a = v2/r to solve problems. 

Centripetal 
force 

(g) recall and use centripetal force F = mrω2, F = mv2/r to solve problems. 

 
 
Playlist of lecture examples:  
https://youtube.com/playlist?list=PL_b5cjrUKDlaAYoOvqyWUXVITtqdkKOSO 

 
 
 
Further Readings / References 
 
1) University Physics with Modern Physics, 14th Ed., Young & Freedman, Chapter 9, Pg 298. 
2) Advanced Level Physics, 6th Ed., Nelkon & Parker, Chapter 2, Pg 48. 
3) College Physics, 8th Ed., Young & Geller, Chapter 6, Pg 161. 
4) Physics for Scientists and Engineers with Modern Physics, 6th Ed., Serway Jewett, Chapter 6, Pg 150. 
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6.1 Introduction 

  
Circular motion is a type of motion we often encounter in our everyday lives, 
- the motion of a car and its passengers when navigating a bend, the motion 
of the capsules of a Ferris wheel when in rotation, children on a spinning 
merry-go-round, and clothes being spun in a spin dryer. 
 
On a larger scale, in astronomy, we know that the moon circles the Earth, 
which circles the Sun, which circles the centre of the Milky Way.  
 
On the atomic scale, for early models of the hydrogen atom, we picture an 
electron orbiting around the nucleus at the centre of the atom (a single proton 
in hydrogen’s case). 
 
Have you ever wondered? 

• Why must an airplane tilt when executing a turn? 

• Why the reading of your weight would be different at the bottom of a Ferris wheel as compared to the 
top?  

• Why do people in a roller coaster not fall out at the top of the loop? (No, it is not because of the belts!) 
 

The exploration of the fascinating world of circular motion begins here. 
 
 

A Short Revision on basic ideas of Newton's Laws of Motion 
 
Newton's 1st Law:  
 
Describes the motion of any object not subjected to a net external force, specifically that 

• an object at rest remains at rest, or 

• an object continues with constant speed in a straight line. 
 
In the presence of a net external force, a constant mass experiences an acceleration governed by Newton's 
2nd Law: 

    = netF
a

m
 

 
Note: 

• Forces which are parallel to the motion of an object result in its motion either speeding up or slowing 
down, with the direction of motion remaining along the original axis. 

• Forces which are perpendicular to the motion of the object cannot affect its speed, but instead will 
change its direction of motion. 

• Forces which are neither wholly parallel nor perpendicular to the direction of motion will affect both 
the speed and direction of the object upon which the force acts. (Consider projectile motion.) 

 
In this chapter you will learn that objects may move in circular paths when they experience a force 
or forces acting perpendicularly to their motion. 
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6.2 Kinematics of Circular Motion 

 
When an extended object such as the wheel of a bicycle is rotating, different parts of the wheel will travel 
different distances in the same time. The outer parts of the wheel will travel larger distances and hence will 
have higher speeds than the inner parts of the wheel. However, all parts of the wheel will pass through the 
same angle in a given time. Hence the speed of rotation of a wheel is better expressed as an angular speed, 
as this is the same for all parts of the wheel. 
 

6.2.1  How angle is measured 

 
The S.I. unit for angles is not the degree but the radian. An angle measured in radians is actually the ratio of 
two lengths: arc length and radius. The arc length s is the distance travelled along the circular path, and the 
angle θ is said to subtend the arc length at the circle centre (Figure 1). 
 
Hence, note that θ is actually a dimensionless quantity since it is a ratio of 2 lengths. 
 

θ (in rad) = 
arc length

radius

s

r
=  

 
s  =  r θ 

 
 

 
One radian is the angle subtended at the centre of the circle by an arc equal in length to the radius of the 
circle. 

 

 

If the circumference of a circle   s = 2πr ,     θ = s/r = 2π  rad . 
Since for a complete circle, the angle subtended is 360, 
 

360   2π rad 
 

We can deduce that    1 radian = 
360

2π

 
 

 
= 57.3 

Conversion between degrees and radians: 

 
 

180   π rad 

Z  (degrees)  Z x 
180


  (radians) 

 

6.2.2 Angular Displacement (θ) 

 
The angular displacement θ is the angle an object has turned about a fixed point. In circular motion, the fixed 
point is taken to be the centre of the circle (Figure 2). 
 

0Δθ θ θ= −  

 

If 
0θ = 0, then Δθ θ= . 

 
S.I. unit of θ: radian (rad) 
 

r 

s 



r 

     Figure 1  

r 


r 

    Figure 2 

0θ   

O 

O 
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6.2.3 Angular Velocity (ω)  
 

The description of circular motion in angular form is analogous to the description of linear motion. Angular 
velocity ω (pronounced as omega) is defined as the rate of change of angular displacement (Recall: In linear 
motion, linear velocity is defined as the rate of change of linear displacement). 
 

 
Angular velocity is the rate of change of angular displacement. 
 

Average angular velocity, ω  = 
change in angular displacement

Elapsed time
 

ω  = 
0

0θ θ

t t

−

−
 = 
Δ

Δ

θ

t
 

 
The instantaneous angular velocity ω is the angular velocity that exists at any given instant. Analogous to 
instantaneous linear velocity, 
 

Instantaneous angular velocity,       
dθ

ω
dt

=  

 
 
If an object has a constant angular velocity, the instantaneous value and the average value are the same 

(i.e. ω = ω ). 

 
Note:  

• Magnitude of the instantaneous angular velocity is called the instantaneous angular speed. 

• S.I. unit of ω : rad s-1 
 

6.2.4 Relationship between Tangential Speed v and Angular Speed  

 
A particle moving in a circle has an instantaneous velocity tangential to its circular path (Figure 3). For a 

constant angular speed, the particle’s orbital or tangential speed v is also constant. (v is also known as 

linear speed.) At any instant, it is directed tangentially to the circular path at the specific point. 

 
 
 
 
 
 
 
 
 
 

Since  
r

s
=    i.e.   s = r 

Taking the time derivative of above and noting that r is constant: 

 

         
dt

d
r

dt

ds 
=      →            where   v is the tangential speed and 

                                                                                  is the instantaneous angular speed. 
 

v ω 

s

s θ 

    Figure 3 

 
 

v = r      
 

Comparing the tangential speed and the angular speed of two circular motion with different radii:  

Angular Velocity – xmPhysics 

   

https://xmphysics.com/2022/12/21/6-1-2-angular-velocity/
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6.2.5 Period (T) and Frequency (f) 

 
Period (T) is the time it takes for an object in circular motion to make one complete revolution, or cycle. 
 
Frequency (f) is the number of revolutions, or cycles, made per unit time. The unit of frequency is s-1, which 
is called the hertz (Hz) in the SI. 
 

frequency, 
1

f
T

=  

  
Note:  

• When asked to define frequency, students often give it as the number of revolutions per second. This 
is incorrect, as a frequency can also be given as e.g. per minute or per year (frequency of the Earth). 

 
Since an angular displacement of 2π rad is travelled in 1 period, 
 

angular speed, ω = 
2π

T
 = 2πf 

 
 
Example 1 
 
A Blu-ray player is spinning a standard Blu-ray Disc (120 mm diameter) at 900 revolutions per minute (RPM). 
Determine  
i) the frequency of the rotation (in revolutions per second) 
ii) the period of the rotation 
iii) the angular speed 

 
 
 
 

 



8 

Example 2 

 
Dishes are placed on a Lazy Susan at a reunion dinner during Chinese New Year. When the Lazy Susan 
is spun around to serve the guests, what can be said about the dishes in the inner circle compared to those 
in the outer circle in terms of their speed and angular velocity? 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

6.3 Uniform Circular Motion 

 
Uniform circular motion is the motion of an object travelling at a 
constant (uniform) speed in a circular path. 
 
An object moving in a uniform circular motion (Figure 4) has a constant 
angular velocity (ω). The magnitude of the velocity vector (or the linear 
speed, v) is constant but the direction of the velocity vector is 
changing. Thus, the linear velocity vector is continuously changing (v1, 
v2 & v3) as the object moves around the circle. Since there is a change 
in the velocity with respect to time, the object can be considered to be 
undergoing acceleration. So the object is travelling at constant speed 
but is still accelerating! 
 
In the next section we derive an expression for the magnitude of this 
acceleration in terms of the speed and radius of the motion. We also find 
out the direction of this acceleration which is quite a surprising result! 
 
 

v1 

v2 

v3 

r 

r 

ω 

Figure 4 

O 

Centripetal acceleration of a body moving with constant speed in circular motion: 
https://xmphysics.com/2022/12/22/6-1-3/ 
 

 

https://xmphysics.com/2022/12/22/6-1-3/
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6.3.1 Derivation of the equation of centripetal acceleration 

In this derivation we only consider the kinematics of uniform circular 
motion to arrive at a general expression for the acceleration an object 
is experiencing when it moves in a circle at constant speed.   
Consider a particle moving in a circle of radius r with uniform angular 
speed (Figure 5a). At one instant the particle is at A, and its 
instantaneous velocity is vA in the direction AA’.  
 

A short time Δt  later, the particle has moved to B, a distance Δr θ  

along the arc, where Δθ  is a small angle, and the particle’s velocity has 

changed to vB in the direction BB’. 
 

With reference to the vector triangle in Figure 5b, which is rotated 90 
with respect to Figure 5a, the arc length can be approximated to a chord. 

For small angle Δθ , 

v    v (note, magnitude of vA = vB = v) 

v/t    v/t 

dv dθ
v

dt dt
=  

     a = v  
 

Similarly,   = = 2( )a rω ω rω  

       = =
2

( )
v v

a v
r r

 

 

As t (or θ) (Figure 5b) becomes smaller, the angle between v and either vA or vB will tend to 90o. Since 

vA and vB are tangent to the circular path, this means v will point towards the centre of the circular path. 

From the derivation above, we see that the acceleration a points in the same direction as v, so the 
acceleration also points towards the centre of the circular path. This type of acceleration in uniform circular 
motion is called centripetal acceleration (centripetal means centre-seeking). 
 

The centripetal acceleration is directed radially inward towards the centre of the circular path. The 
direction of the centripetal acceleration is thus continuously changing. 
 
For an object in uniform circular motion, there is no acceleration component in the tangential direction 
(i.e. angular acceleration), or else the magnitude of the velocity vector (tangential or linear speed) would 
change.  

 
The centripetal acceleration is indicated by the subscript c. Hence,       

Centripetal acceleration, 
2

2= = =c

v
a rω vω

r
 

 
 
 
 
 
 

Figure 5a 

Figure 5b 

 

 

  

Deriving the formula for centripetal acceleration 𝑎 =  
𝑣2

𝑟
 : 

Derivation of Formula for Centripetal Acceleration v^2/r - YouTube 

 

 

https://www.youtube.com/watch?v=XgkzeUxChKU
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Conceptual Questions:  

(a)  Is an object travelling at non-uniform speed accelerating? 

 
Yes, there is a change in velocity. 

(b)  Can an object travelling at constant speed be accelerating? 

 
Yes, an example is an object moving in circular motion. 

 

6.3.2 Centripetal Force (Fc) 
 

In the last section we discovered both the magnitude and direction of the acceleration associated with circular 
motion. We now move into the dynamics of circular motion, quantifying and identifying forces that can 
constrain objects to follow such circular paths. 
To provide acceleration, there must be a net force. Thus, to produce a centripetal (inward) acceleration, 
there must be a resultant force towards the centre of the circular motion. As the resultant force is centre-
seeking, we call it the centripetal force, also indicated by the subscript c. 
 

From Newton’s second law ( F = ma), 
 

Fc = mac =  
2mv

r
 = mrω2 = mvω, and it is always directed toward the centre of the circle. 

 

Note: In general, when a force is continuously applied at an angle of 90 to the direction of motion (which 
in this case centripetal force is), only the direction of the velocity changes. 

 

Conceptual Question: Is there work done by a centripetal force?  
 

No, the centripetal force is always perpendicular to motion. (W = Fs cosθ, where θ = 90°)  
 

 
Note:    For uniform circular motion, 
 

 

• Centripetal force is not a new type of force, it is provided by the net force pointing toward the centre 
of the circular path, and this net force is the vector sum of all the force components that point 
along the radial direction. 

• Forces labelled as “centripetal” or labelled as 
2mv

r
should never appear in a free-body diagram! 

 

Some forces that provide the centripetal force necessary for a body to undergo a circular motion: 
https://xmphysics.com/2023/01/02/6-2-1-centripetal-force/ 
 

 

https://xmphysics.com/2023/01/02/6-2-1-centripetal-force/
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Example 3 - Conical pendulum 
 
In a conical pendulum system, a small pendulum bob of mass 0.50 kg is rotating in a fixed horizontal 

plane. The string is 30 cm long and makes an angle of 15 to the vertical. 
Calculate the (a) tension in the string; 
  (b) linear speed of the bob; 
  (c) period of rotation of the bob.  
 
 

 
 
 

 

 

 
 

 

 
 

Example 4 
 
Explain, with the aid of a diagram, why the mass at the end of a light inelastic string cannot be whirled in 
uniform circular motion in such a way that the string is horizontal. 
 
. 
 
 
 
 
 
 
 
 
 
 

 

 

15 

T 

θ 

mg 

A conical problem explained:  
https://www.youtube.com/watch?v=7CDwVWMvoGc 

 

https://www.youtube.com/watch?v=7CDwVWMvoGc
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6.4 Vertical Circular Motion 

 
When an object is set to travel in a vertical circular path, (without the use of a motor*) its speed will not be 
constant as some kinetic energy will be lost to account for potential energy the object gains as it climbs the 
circle. This results in non-uniform circular motion. For non-uniform motion, the net force is no longer equal 
to the centripetal force. We can still resolve the net force into its tangential and radial components. The 
tangential component changes only the speed of the motion, while the radial component changes only the 

direction of the motion. Calculations-wise, the equation for centripetal acceleration is still 
2

v

r

, just that 

centripetal acceleration must now vary as the speed changes. 
 
Typical examples of vertical non-uniform motion, are a roller coaster going through a loop-de-loop and an 
object whirled in a vertical circle at the end of a string. Both will be further explored in Examples 5 and 6 
below. We will assume in both cases, that the object’s total energy is conserved. At the top of the 
circular motion, the object’s gravitational potential energy is larger than at the bottom of the circular motion. 
By the principle of conservation of energy, the object will be moving faster at the bottom than at the top as it 
will possess more kinetic energy to compensate for having less potential energy. 
 
Depending on the context, there are two approaches to attack problems involving vertical, non-uniform 
motion.  
 
In the FORCES APPROACH, we follow our general strategy for solving dynamics problems: drawing a 
free-body diagram, carefully identifying the individual forces experienced by the object undergoing circular 
motion, and determining the net force acting on the object. Subsequently, we resolve the net force into its 
tangential and centripetal components. 
 
The ENERGY APPROACH, involving vertical, non-uniform circular motion invokes the principle of 
conservation of energy. We know how the gravitational potential energy changes as an object goes from a 
higher point to a lower point. Hence, if we know the difference in height between two points, we also know 
the difference in kinetic energy and, thus, the difference in speed. 
.  
 
*Take the Singapore Flyer as an example, the carriages are moving in a uniform circular motion although it is a 
vertical circular path.   
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Example 5 - Roller coaster 
 
Some roller coasters have several loops along the track. The picture on the 
right illustrates such a coaster executing a loop-the-loop.  
 
 
 
 
 
 
 
 
 
 
 
 
In the question below, assume that the total mass of one car plus its passengers is 170 kg and that 
friction can be ignored. 
 
(a) A passenger car for a roller coaster enters a loop of radius 19 m at position 1, as indicated in the 

diagram, with a speed of 33 m s-1. Determine the normal contact force the track exerts on the car at  
i) the bottom (position 1) and 
ii) the top (position 2) of the loop. 

 
(b) Find the minimum speed at which the passenger car must travel while it is at the top of the loop, in 

order to clear the loop safely. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

r 

1 

2 

Analysing the motion of the roller coaster: 
https://www.youtube.com/watch?v=bEoLhtPif2E 
 

 
 

https://www.youtube.com/watch?v=bEoLhtPif2E
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Example 6 – String and bob 
 
A stone of mass 800 g is tied to one end of a string and is whirled in a vertical circle. The string is 
inextensible and of length 1.2 m. The stone has a certain speed vA at the lowest point, as shown below. 
 
(i) Determine the minimum speed the stone must have at the top of the 

circular motion if the string is to be taut at that instant.  
 
(ii) Hence, show that the stone can complete a vertical circular motion if  
       vA = 8.0 m s-1.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
In some other instances of vertical circular motion, the speeds of the objects are kept constant (e.g. Ferris 
wheel). In these cases, the objects are undergoing uniform circular motion. You will encounter some of these 
applications in the tutorial.  

6.5  Problem solving for Circular Motion 

 
1. Identify the object undergoing circular motion (and the relevant known quantities such as m, v, r, ω…). 
2. Draw a free-body diagram of the object, carefully identifying the individual forces experienced by the 

object, to determine the net force acting on the object. 
3. Resolve the net force into relevant perpendicular “directions”, i.e., the tangential and centripetal 

components. 
4. The tangential component is usually zero. If it is not, applying Newton’s 2nd Law to the tangential 

component only will tell you how fast the object is slowing down or speeding up.  

5. The centripetal component will be equal to
2mv

r
. You can use this to determine any further unknowns 

in the question. 
 
Note that you have not learnt a new way of solving physics problems. The main strategy is still to draw a free-
body diagram and to resolve the net force into perpendicular components. In the previous topics, it was 
convenient to take the horizontal and the vertical component, or the component along some slope and the 
component perpendicular to it. Now it is convenient to choose components parallel and perpendicular to the 
motion. 

1.2 m 

vA  

Analysing vertical circular motion: 

https://www.youtube.com/watch?v=N0ByVmuoIfU 

 

 

https://www.youtube.com/watch?v=N0ByVmuoIfU
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6.5.1 Further examples 
 

Example 7 - Car going around a bend 
 

(a) A bend in the road has a 50 m radius of curvature. A car of mass 600 kg takes the bend at 45 km h−1. 
i) What is the centripetal acceleration of the car?  
ii) What is the centripetal force experienced by the car and what provides it? 
iii) What will happen to the car if driver decides to take the bend at 60 km h-1 instead? (Given that the 
maximum friction between the tyres and road surface is 3000 N.)  

 
 
 
 
 
 
 
 
 
 
 
 
 
(b) When the car negotiates a corner on horizontal ground, the frictional force between the tyres and the 

ground is the only force providing the centripetal force. As there is a limit to this frictional force for a 
particular road surface, there is a maximum speed which the car can make the turn safely, beyond 
which skidding will occur.   
 
Hence, some corners (especially at race-tracks) have raised embankments to increase the maximum 
speed at which a vehicle can turn the corner than if on a level road. It does so by making the normal 
contact force contribute a component to the centripetal force. 
 

For an embankment inclined at 20 to the horizontal, find the speed at which the normal contact force 
is able to completely provide the centripetal force (i.e. no frictional force is required).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

Centre of circular path 

20 

Normal 
contact 
force 

Frictional force 

Weight 

Normal contact force 

W 

Banking of a slope and the effect on the turning of a car: 
https://www.youtube.com/watch?v=KEEqE93nfe8 
 

 

https://www.youtube.com/watch?v=KEEqE93nfe8
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Example 8 - Person on a Ferris wheel 
 
The figure below is a simplified diagram of a Ferris wheel. A single carriage with a passenger is shown.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The Ferris wheel takes 0.500 mins to make one complete revolution. Each carriage goes through a circular 
path of radius 10.0 m. The passenger’s mass is 65.0 kg.  
 
Determine the normal contact force exerted by the carriage on the passenger at  
(a) Position A, 
(b) Position B, and  
(c) Position C 
(d) If the passenger were to be standing on a weighing scale, what can you infer about the readings at 
Positions A, B and C respectively? 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 

10.0 m 

Position A 

Position B 

Position C 

Circular motion of a Ferris Wheel: 
https://www.youtube.com/watch?v=XwlMqWEV-pc 
 

 

https://www.youtube.com/watch?v=XwlMqWEV-pc
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Tutorial 6 Circular Motion 
 
Self-Review Questions 
 
S1 (a) An object cannot move in a circle unless there is a resultant force acting ________ the  centre of 

the circle. This is called a ___________ force. If this force is removed, the object will continue moving 
in a ___________ line, because of Newton’s __________ law. 

 
(b) The centripetal force causes a centripetal __________. The larger the linear __________ (in m s-1) 

and the smaller the __________ of the circle, the larger the acceleration.  
 
(c) The number of revolutions in one second is known as the ___________. This is measured in 

___________.  The time taken for one complete revolution is called the _________. 
 
 
S2 (N96/I/9) A disc is rotating about an axis through its centre and perpendicular to its plane. A point P on 

the disc is twice as far from the axis as a point Q. 

At a given instant what is the value of ? 

  
A  4  B    2        C    ½              D    ¼  

 
 
S3 (edited N91/I/9) A particle travels in uniform circular motion. Which of the following correctly describes 

the linear velocity, angular velocity and centripetal acceleration of the particle?                              
 
 Linear velocity  Angular velocity Centripetal acceleration 

A constant constant varying 

B constant constant zero 

C constant varying constant 

D varying constant varying 

E varying varying constant 

 
 
S4  (N93/I/6) Which of the following statements is correct for a particle moving in a horizontal circle with 

constant angular velocity?  
 

A The linear momentum is constant but the kinetic energy varies. 

B The kinetic energy is constant but the linear momentum varies. 

C Both the kinetic energy and linear momentum are constant. 

D Both speed and linear velocity are constant. 

E Neither the linear momentum nor the kinetic energy is constant. 

 

S5  (N2015/I/11) The  minute hand of a large clock is 3.00 m long. What is the magnitude of its angular 
velocity? 

  
     A  1.39 x 10-4 rads-1     B  1.75 x 10-3 rads-1          C  5.24 x 10-3 rads-1            D  1.05 x 10-1 rads-1      

 
 
S6 (J79/II/1) A mass of 2 kg rotates at constant speed in a horizontal circle of radius 5 m and the time for 

one complete revolution is 3 s. The force, in N, acting on the mass is   

A  

 

22

9

π
   B  

24

9

π
      C 

 

240

9

π
          D  

2100

9

π
              E  

2400

9

π
 

Q ofvelocity  linear the

P ofvelocity  linear the
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S7 (N2013/I/11) A small ball suspended from a light thread moves in a horizontal circle at a constant speed. 
 

 
 
A student draws the forces acting on the ball but fails to label them.  

Which diagram shows the correct forces? 

 

                                                             

 
 
S8 (J91/I/8) A mass on the end of a string is set in motion so that it describes a circle in a horizontal plane. 

Which diagram shows the direction of the resultant force acting on the mass at an instant in its motion? 
                                                  

 

 

 
 
 
 
S9 (J82/II/6; N85/I/4) A car of mass m moving at a constant speed v passes over a humpback bridge of 

radius of curvature r. Given that the car remains in contact with the road, what is the net force R exerted 
by the car on the road when it is at the top of the bridge?                                                     

 

A  R = mg + 
r

mv2

   B  R = 
r

mv2

 

C  R = mg – 
r

mv2

   D  R = mg 

 
 
S10 (J88/I/7) An artificial satellite travels in a circular orbit about the Earth. Its rocket engine is then fired and 

produces a force on the satellite exactly equal and opposite to that exerted by the Earth’s gravitational 
field. The satellite would then start to move  
 
A  along a spiral path towards the Earth’s surface. 
B  along a tangent to the orbit. 
C  in a circular orbit with a longer period. 
D  in a circular orbit with a shorter period. 

 
 

A B C D 
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Discussion Questions 
 
D1 A small coin of mass 2.0 g is placed on a flat horizontal turn-table. The turn-table is observed to make 

three revolutions in 3.14 s 

a) What is the angular displacement of the coin after it has rotated for 2.0 seconds? 
b) What is the speed of the coin when it rides without slipping at a distance 5.0 cm from the centre of the 

turn-table? 
c) What is the acceleration of the coin in part (b)? 
d) What is the frictional force acting on the coin in part (b)?     

 
D2 (J87/I/9) A mass of 0.050 kg is attached to one end of a piece of elastic of unstretched length 0.50 m. 

The force constant of the elastic is 40 N m-1. The mass is rotated steadily on a smooth table in a horizontal 
circle of radius 0.70 m as shown. What is the approximate speed (in m s-1) of the mass? 
  

 A    11 

 B    15 

 C    20 

 D    24 

 E    28  

 

 

D3   (J81/II/7) A passenger is sitting in a railway carriage facing in the direction in which the train is travelling. 
A pendulum hangs down in front of him from the carriage roof. The train travels along a circular arc 
bending to the right. Which one of the following diagrams shows the position of the pendulum as seen by 
the passenger and the directions of the forces acting on it?                                                 

 
 
 
 
 

 

 

 

D4 (J97/I/8) The maximum safe speed of a car rounding a unbanked corner is 20 m s-1 when the road is dry. 
The maximum frictional force between the road surface and the wheels of the car is halved when the 
road is wet, what is the maximum safe speed (in m s-1) for the car to round the corner?  

 A    B         C          D    

 
D5 In a popular amusement park ride known as the Rotor, people stand against the wall of a cylinder that 

is rotated. When rotating fast enough, the floor drops 
away, leaving the riders “pressed” against the wall in a 
vertical position as shown in the picture below. 

 

For a cylinder of radius 3.00 m rotating at 5.00 rad s-1,  

(a) identify which of the diagrams in the figure on the right 
correctly identifies the forces acting on the person, and 
suggest what keeps the person from sliding down. What 
physical force provides for the centripetal acceleration? 

 
Calculate the 

(b) centripetal acceleration and  

(c) centripetal force, experienced by a 60 kg person. 

4

20

22

20

2

20

2

20

A B C D E 
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D6 Suppose that two masses, m1 = 2.5 kg and m2 = 3.5 kg, 
respectively, are connected by light strings and are in uniform 
circular motion on a horizontal frictionless surface as shown on the 
right, where r1 = 1.0 m and r2 = 1.3 m. The tensions in string 2 and 
1 are T2 = 2.9 N and T1 = 4.5 N respectively.  

Find the 

(a)  centripetal accelerations,  

(b)  magnitude of the tangential velocities of the masses.  

 

 

 

D7 (2017 C2 BT2 P2 Q2) The setup shown in the figure below is used to investigate how the force required 
to keep a rubber bung of mass m moving in uniform horizontal circular motion at a set radius, r varies 
with the speed of the motion. The rubber bung is set and maintained in motion by the experimenter 
gripping and twirling the glass tube. 

 

 
        

(a) 
 
 
 

 
(b) 
 
(c) 
 
 
 

With a set radius r of 57.0 cm, washers of total mass 35.0 g allow the bung to perform 20 

revolutions in a time of 18.2 seconds.  

Show that the mass of the rubber bung is 12.6 g. 

 

Suggest the purpose of the paper clip in the experimental set up.     

 

(i) Washers of mass 95.0 g are now fixed to the string and the radius of rotation is maintained  
at 57.0 cm. Calculate the new speed of the bung.    

                                                                            
(ii) Explain why in reality, it is not possible for the bung to rotate in a purely horizontal circle. 

 
 
(iii)   Hence, when the bung is performing circular motion with washers of mass 95.0 g attached, 

calculate the angle θ, the string makes with the horizontal.                                                

 
 
[3] 
 
[1] 
 
 

[2] 
 
[2] 
 
 
 
[2] 
 
 

glass tube 

paper clip 

string 

washers 

rubber bung 

r 

String 1 

String 2 
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D8 (N81/I/1)  A particle is suspended from a point A by an inextensible string of length L. It is projected 
from B with a velocity v, perpendicular to AB, which is just sufficient for it to reach the point C.                    

 

(a) Show that, if the string is just to be taut when the particle reaches C, its speed there is gL .   

(b) Find the speed v with which the particle should be projected from B. 

 

D9 Serway and Faugh. (7E) Page 223. P7.59. 

A frictionless roller coaster is given an initial velocity of vo at height h, as in the figure below.   
The radius of curvature of the rack at point A is R. 

 

 (a) Find the maximum value of vo so that the roller coaster stays on the track at A solely because 
of gravity. 

 (b) Using the value of vo calculated in (a), determine the value of h’ that is necessary if the roller 
coaster just makes it to point B. 

 (c) Consider solution in (b), why do we not use the equations of motion that we learnt in the earlier 
chapter in kinematics to solve this question?  
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D10 (MJC Prelims 10/I/12) A particle of mass m performs vertical circular motion as shown in the 
diagram. 

 
 
 
 
 
 
 
 

 
The following two graphs show the vertical and horizontal components of the 
velocity of the particle along path ABC. 

 
 

 
 

Calculate the centripetal acceleration at point C.                                                    
   

A zero B 
-24.91 m s  C 

-29.81 m s  D 
-222.1 m s  

 
 
D11 Sasha’s favourite ride at the fair is the Ferris wheel that has a radius of 7.0 m. 
 

(a) If the ride takes 20.0 s to make one full revolution, what is the linear speed of the wheel? 

(b) What is the magnitude of the centripetal force acting on Sasha’s 50.0 kg body?  

(c) In order for Sasha to feel weightless at the top of the ride, at what linear speed must the Ferris wheel 
turn?  

(d) At this speed, how much will she appear to weigh at the bottom of the Ferris wheel? 

 

 

 

 

 

 

 

 

C 

m 

A 

B 



23 

D12 The Singapore Flyer (as shown in the figure below) is a giant observation wheel that is Asia's most visible 
iconic visitor attraction, providing breath-taking, panoramic views of Singapore and beyond. Completed 
in Mar 2008, it is one of the world's largest man-made moving land objects. It has a height of 178 m, a 
diameter of 150 m and sits on a 28 m high three-storey terminal building.  

 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
                                                                   

 
During the testing phase, the Singapore Flyer went through a series of continuous revolutions without 

stopping. Assume that it revolves at constant angular speed  and each complete revolution takes 37 
minutes. 

  
(a) Calculate the angular speed of the Singapore Flyer.          [2]  
 
(b) Hence or otherwise, determine the speed of a passenger capsule which is located at the 

circumference.                                        [2] 
 
(c) Given that there are 32 equally spaced capsules on the Flyer, find the time taken for a capsule to 

go from position X to position Y.             [2] 
 
(d) The Singapore Flyer now revolves at a much faster rate such that the centripetal force on the 

passenger becomes about half his weight. Draw and label the forces acting on a passenger 
standing inside a capsule at the three positions in the figure below.                            [4] 

 

 

 

X 

Y 

 direction of 
rotation 
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Answers: 
 
D1 (a) 

(b) 
(c) 
(d) 

5.7 rad 
0.30 m s-1 

1.8 m s-2 

3.6  10-3 N 
 
D5 

 
(b) 

 
75.0 m s-2 

 (c) 4500 N 
 

D6 (a) a1 = 0.64 m s-2,   a2 = 0.83 m s-2 
 (b) v1 = 0.80 m s-1,   v2 = 1.0 m s-1 

 
D7 
 

(c)(i)   
(c)(iii) 

6.49 ms-1   

7.62
  

D8 (b) gL5  

 
 
D9 
 
 
 

 
(a) 
 
(b) 
 

vo = )
3

2
(

h
Rg −    

h’ = 
3

2

2

hR
+  

 
D11 (a) 2.20 m s-1 
 (b) 34.6 N 
 (c) 8.29 m s-1 
 (d) 981 N 

 
D12 (a) 2.83 x 10-3 rad s-1 
 (b) 0.212 m s-1 
 (c) 139 s 
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