Measurement Tutorial Solutions

	Tutorial Questions		SIOs / Notes	
Q1	Ans: A	1	Students need to recall the following base quantities and their units: mass (kg), length (m), time (s), current (A), temperature (K), amount of substance (mol).	
Q2	Ans: B		1	Students need to express
	Since Pressure = Force / area Therefore,			derived units as products or quotients of the base units.
	[Pressure] = [Force] / [Area]			
	= [mass] [acceleration] / [Area	1]		
	= (kg) (m s ⁻²) / m ²			
	= kg m ⁻¹ s ⁻²			
Q3	Ans: B		1	Students need to use the
	Converting all to the SI units and their so	ientific notations:		symbols.
		Area in m ²		
	A 1 x 10 ⁻² x 1 x 10 ⁻¹	1 x 10 ⁻³		
	B 1 x 10 ³ x 1 x 10 ⁻³	1		
	C 1 x 10 ⁶ x 1 x 10 ⁻⁹	1 x 10 ⁻³		
	D 1 x 10 ⁻¹² x 1 x 10 ⁻⁶	1 x 10 ⁻¹⁸		
		·		
Q4	 Ans: C Recall the four rules: (i) Only terms with the same units subtracted. => Q and RS have sates (ii) Units on both sides of an equal same. => P, Q and RS have the sector (iii) The exponent of a term has no has no units. => not applicable for has no units. => not applicable for the logarithm of a quantity has applicable here Hence, option A is wrong. There is no basis for us to know if option While option D is a correct statement, it homogeneous equation which is referred Hence the best answer is option C. 	s can be added or ame units ation must be the same units units. E.g. In e^x , x here s no units. => not a B is correct. t does not relate to a d to in the question.	1	Students need to use SI base units to check homogeneity of physical equations.

-					
Q5 (a)	No. (of moles of iron atoms, $n = \frac{mass}{molarm}$ = $\frac{50.4 \times 10^{-10}}{100}$			
		5.6 x 10	-2		
(b)	The divic	mass of an individual iron atom in the individual iron atom in the individual individual in the individual individual in the individual individual in the individual individual individual in the individual individual in the indin the individual in the indin the ind	can be obtained by ວ's number.		
	Ther	efore, mass of 1 atom = $\frac{\text{mass of 1 r}}{\text{Avoga}}$	nole of iron atoms adro's number		
		$=\frac{56 \mathrm{x}10^{-3}}{6.02 \mathrm{x}10^{2}}$	3		
		= 9.30 × 10	⁻²⁶ kg		
(c)	The	number of iron atoms in the cube = = =			
Q6	Ans:	C		1	Students need to express derived units as products
	[C] =	J K ⁻¹			or quotients of the base
	[α] = =	[C]/[1] K ⁻¹ / K			units.
	[B] =	= J K ⁻² [C]/[T] ³			
	=	$J K^{-1}/K^{3}$			
Q7	= Assu	me:		1	Students to note that
	-	Average heart rate of a person = heart beat = 1.2 beat per sec	= 70 per minute →		estimates can be kept as
	-	Average lifespan of a person = 8	80 years		
	Est	imated number of a human heart t			
	N	lo. of times = 1.2 x (60 x 60 x 24 x3	65 x 80) ≈ 3 x 10 ⁹	1	
Q8	a.	Joe is 180 cm tall.	reasonable		Students need to make
	b.	I rode my bike to campus at a speed of 50 m s ⁻¹ .	Not reasonable $(50 \text{ m s}^{-1} = 180)$		reasonable estimates of physical quantities
			km/hr, average		included within the
			bike speed is abt 15.5 km/hr)		syllabus.
	С.	I can throw a ball a distance of	Not reasonable		
		Δ NIII.	at a speed of 60		
			km/hr, it can		

			travel to around		
			15 m)		
	d.	Joan's newborn baby has a	Not reasonable		
		mass of 33 kg.	(a new born is		
		I can throw a hall at a speed of	ADOUL 3.3 Kg)		
	е.	50 km/hr.	Reasonable		
	f.	The atmospheric pressure is	Not reasonable		
		100 Pa.	(atm pressure is		
			10 ⁵ Pa)		
	g.	The power of a LED light bulb is	Not reasonable		
		200 W.	(abt 2W to 5W)		
Q9	Ans:	C		1	Students need to know
	Abso	blute uncertainty = 1% x 3.924 = 0.0	3924 = 0.04 V (Limit		how to calculate
	to 1	st) mater reading should have the sa	ma provision as the		absolute uncertainty
	ahso	lute uncertainty. In this case, 2 d n	the precision as the		uncertainty and express
	Volt	meter reading with its uncertainty:	= (3.92+0.04) V		the quantity and its
			(0.0220101)1		uncertainty correctly.
					, ,
Q10	Ans:	C		1	Students need to assess
					the uncertainty in a
	Since	P = I2R			derived quantity by
	The				simple addition of actual,
	ΔP	percentage uncertainty of P ~ 1000 ($\sim \frac{2\Delta I}{2} \propto 1000$ ($\sim \frac{\Delta R}{2} \propto 100$		inactional or percentage	
	= <u></u>	$\times 100\% = \frac{1}{1} \times 100\% + \frac{1}{R} \times 100\%$		simple numerical	
	= 2 ($\left(\frac{0.03}{2.5}\right) \times 100\% + 2\%$			substitution.
	= 6 %	6			
Q11	Ans:	В		1	Students need to assess
	Δο	$\Delta d \Delta V \Delta L \Delta I$			derived quantity in a
	$\frac{r}{0} =$	$=2\frac{d}{d} + \frac{d}{V} + \frac{d}{L} + \frac{d}{L}$			simple addition of actual.
	٢				fractional or percentage
	Thus	, compare each of the term	to find the least		uncertainties or by
	unce	ertainty:			simple numerical
					substitution.
	For o	diameter, $2\frac{\Delta a}{d} = 2\left(\frac{0.01}{1.20}\right) = 0.017$			
	For o	current, $\frac{\Delta I}{L} = \frac{0.05}{1.50} = 0.033$			
	For l	ength, $\frac{\Delta L}{L} = \frac{1}{100} = 0.010$			
	For	potential difference, $\frac{\Delta V}{\Delta V} = \frac{0.1}{0.1} = 0.0$	20		
	r	v 5.0			
	Hend	ce, measurement in current give	s rise to the least		
	unce	ertainty in the value for the resistivi	ity.		
Q12	Equa	ation provided: $\frac{1}{c} = \frac{1}{c} + \frac{1}{c}$			Student should know
		f u v			when to use the
					uncertainty formula and

F	Apply the Extreme Values Method.		when to apply the
			Extreme Value Method.
F	Plugging in the highest value of u and v into the equation		
g	gives the highest value of f:		In this case,
		1	1 u + v
	1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1	-	$\frac{1}{f} = \frac{1}{2}$
5	$\frac{1}{53} + \frac{1}{205} = -\frac{1}{f}$ and thus $f = 42.1$		j uv
			1111
	Plugging in the lowest value of u and v into the equation		$f = \frac{uv}{v}$
1	rives the lowest value of f		u + v
E E	gives the lowest value of r.		The product/quotient
			rule cannot be applied
-	$\frac{1}{1} + \frac{1}{1} = \frac{1}{2}$ and thus $f = 37.9$		when the same variables
4	47 195 f		annear in both
			appear in both
S	So, f ranges from 37.9 to 42.1.		numerator and
			denominator. Use the
Т	The absolute uncertainty is found by:		Extreme Values Method
Ŀ	Highest value of f – lowest value of f 42.1–37.9	1	in this case.
-	$\frac{1}{2}$ = $\frac{1}{2}$ = 2.1	-	However. note that
			when using the Extreme
Т	Thus the absolute uncertainty of f is ±2 mm (1 s.f.).	1	Values mothed was the
			values method, use the
k	* Demember to include united		equation in the original
	" Remember to include units!		form given in the
			question. Do NOT use
			the equation in the form
			uv
			$f = \frac{d}{dt + dt}$
			u + v
			whereby you will get
			uncertainty of 5 mm
			instead of 2 mm. This is
			because it doesn't make
			sense to substitute
			different values of u in
			the numerator and
			denominator since at
			any instant the two
			values of u should be the
			same. Likewise for values
			of v. F.g. to get
			maximum f you cannot
			substitute maximum u in
			the numerator and
			minimum u in the
			denominator.
			Thoro is an alternative
			method using the
			addition/subtraction rule
			and product/quotient

			rule. But this method proves more tedious: <u>Method 2 Find the</u> <u>absolute uncertainties in</u> <u>1/u and 1/v separately</u> <u>first.</u>
			$\frac{\Delta\left(\frac{1}{u}\right)}{\left(\frac{1}{u}\right)} = \frac{\Delta(1)}{1} + \frac{\Delta u}{u}$ $\Delta\left(\frac{1}{u}\right)$ $= \left[0 + \frac{\Delta u}{u}\right] \cdot \left(\frac{1}{u}\right)$ $= \frac{\Delta u}{u^2}$ $= 1.2x 10^{-3} mm^{-1}$
			Similarly, $\Delta(\frac{1}{v}) = \frac{\Delta v}{v^2} = 1.25x10^{-4}mm^{-1}$
			$\Delta\left(\frac{1}{f}\right) = \Delta\left(\frac{1}{u}\right) + \Delta\left(\frac{1}{v}\right)$ $= 1.325x10^{-3}mm^{-1}$
			$\Delta\left(\frac{1}{f}\right) = \frac{\Delta f}{f^2}$ $\Delta f = \Delta\left(\frac{1}{f}\right) \cdot f^2$ $= 2 mm (1 s. f.)$
			Absolute uncertainty must be rounded off to 1 s.f.
Q13	(a)(i) Using the <i>average</i> values of h & t. $h = \frac{1}{2}gt^{2}$ $g = \frac{2h}{t^{2}} = \frac{2 \times 2.66}{0.740^{2}} = 9.72 \text{ m s}^{-2}$	1	It suffices to use the average / mean values of h & t. There is no need to compute maximum and minimum values of g and use the values to calculate the average value of g.
			Students should recall the meaning of number of significant values and quote answers accordingly.

(a)(ii) 1. $\frac{\Delta h}{h} \times 100\% = \frac{1}{266} \times 100\% = 0.38\% \text{ (2 s.f)}$	2	Students should recall and apply the correct equation for % uncertainty.
• Several students wrote Δh or $\Delta h/h$ on the left hand side of the equation, which resulted in a mismatch between the left hand side and right hand side. E.g. $\Delta h = \frac{1}{266} \times 100\% = 0.38\%$ (wrong!!)		Strictly speaking, final answer should be to 1 s.f. since Δh is in 1 s.f. However, this particular question stipulates expressing the answer in 2 s.f.
(a)(ii)2. $\frac{\Delta t}{t} \times 100\% = \frac{0.005}{0.740} \times 100\% = 0.68\%$ (2 s.f.)	2	
b) $h = \frac{1}{2}gt^{2}$ $g = \frac{2h}{t^{2}}$ $\frac{\Delta g}{g} = \frac{\Delta h}{h} + 2\frac{\Delta t}{t}$ $\Delta g = \frac{0.38 + 2(0.68)}{100} \times 9.72 = 0.169 = 0.2 \text{ m s}^{-2}(1 \text{ s.f.})$ $\therefore (g \pm \Delta g) = (9.7 \pm 0.2) \text{ m s}^{-2}$ Feedback for Assignment: • An important step is to make the unknown (g) the subject in the equation before applying the product/quotient rule. • Many students did not include the units for Δg . Fractional uncertainty has no units but absolute uncertainty has units. • In the last step, many students wrote "g" instead of "g \pm \Delta g" on the left side of the equation: "g = (9.7 \pm 0.2) \text{ m s}^{-2"} (wrong!!)	1 1	Students should remember and apply the uncertainty propagation formulae for products and powers. Before applying the formulae, make the unknown (g) the subject in the equation first. Students should remember that absolute uncertainty is quoted to 1 s.f. since it is an estimate and we can't be too precise about an estimate. Also, the g value is quoted to the same precision as the absolute uncertainty.
 c) t is precise due to more precise measuring instruments and technique used for time measurement in this experiment which allows for smaller uncertainty in the measurement. However t may be inaccurate due to systematic errors such as: 		Students should recognise that inaccuracies are caused by systematic errors, and be familiar with common systematic errors in experimental setups.

i. Zero error or miscalibration of the timer. Thus the reading obtained would either be always an overestimate or underestimate of the true value.

ii. Arrangement of measuring instruments is another source of systematic error: The ball would have to be dropped **above** the upper photogate (the one that starts the timer); the initial position of the ball cannot be exactly at the photogate otherwise the timer would be started even before the ball is dropped. Hence the initial position of the ball must be slightly above the upper photogate. As such, **the ball would have gained some speed before starting the timer; i.e. the ball's speed WILL be non-zero when the timer is started.** Thus the time t for the ball to fall through distance h between the 2 photogates would **always** be shorter than the actual timing by a fixed amount, resulting in systematic error.

Feedback for Assignment:

- Problematic explanation 1: "The height from which the ball is released through the photogate may differ for different measurements." → Problematic because this is a random error, not systematic error.
- Problematic explanation 2: "Once the terminal velocity is reached, its speed remains constant which affects acceleration of the ball." → Problematic because unlikely that terminal velocity is reached since air resistance is negligible compared to the ball's weight, as well as, since the ball falls through a very short distance only.
- Problematic explanation 3: "Wind may cause the ball to not travel in a straight line." → Problematic because, firstly, it is too silly an error to make by a trained physics experimenter. It is common sense to conduct the experiment in an environment without wind. Secondly, the metal ball is heavy, and thus any slight breeze would not affect its path significantly. Thirdly, wind has turbulence and can change direction during the motion of the ball, thus error likely to be random not systematic.
- Problematic explanation 4: "End error of metre rule causes h to be underestimated." → Problematic because question asks for systematic error in t measurement, not h measurement. Although h affects t, in making the h measurement, other errors like parallax error and a non-vertical metre rule could affect h also. Thus the overall effect on t

Notes:

1

1

1) As the time taken is very precise ($\Delta t = 0.005$), the reading should not be taken by a stopwatch. Therefore human reaction time is NOT acceptable as an answer.

2) Because it is a small and dense ball, and speeds achieved by the ball in this experiment is likely very low, the effect of air resistance on the ball's motion is unlikely to be significant. In fact, Cambridge did not accept this as an explanation.

3) Question defines t as the time taken when the ball is dropped **from rest**. Timer must be started at the instant ball is released **from rest** for an accurate measurement.

4) In fact, the ball would have to be dropped ABOVE the upper photogate (the one that starts the timer); the initial position of the ball cannot be exactly at the photogate otherwise the timer would be started even before the ball is dropped. Hence the ball must be released slightly above the upper photogate. As such, the ball would have gained some speed before starting the timer; i.e.

	-	-	
	 measurement is not definitely skewed in one direction. Therefore, cite errors that affect t directly. Problematic explanation 5: "Photogates might not be exactly parallel to each other, or, may not be horizontal." → Problematic because this causes random error not systematic error. Top view of photogate: 		the ball's speed WILL be non-zero when the timer is started. Thus the time t for the ball to fall through distance h between the 2 photogates would always be shorter than the actual timing, resulting in systematic error.
	Left end view of photogate: Metal ball 1 2 Top photogate		5) Note also that in the setup, the time t recorded by the timer will be the time taken for the ball to fall between the 2 photogates, since the timer is started only when the ball passes the upper photogate and stopped when it passes
	Bottom photogate 🛛 🗖 🗕 – –		the lower photogate.
	(scenario 1: beams of both photogates are parallel and horizontal) – Regardless of the position of release of the metal ball, 1 or 2, distance between beams remains constant.		Therefore h must be taken to be the distance between the 2 photogates. This means that measuring h from
	Metal ball 1 2 • • Top photogate		the initial position of the ball (i.e. above the upper photogate) instead of from the upper photogate would not be a solution to the systematic error.
	(scenario 2: beams are tilted, not parallel) – Depending on position of release of the metal ball, 1 or 2, distance h differs. Therefore it is a random error since position of the ball is random from measurement to measurement.		
Q14	Ans: B	1	Students need to
	 Since this a Number of readings vs x graph, small spread in measurements on the graph - precise average value is not close to true value (x₀) - not accurate 		understand the distinction between precision and accuracy.

Q15	Ans: B								1	Students are to be	
										familiar with how	
	Smalle	est syste	ematic	error =	> accur	ate read	dings. H	ence we		systematic error	
	Wan	t readir	igs whic	ch are a		e but no	t very p	orecise.		manifests in actual data	
	nce	1	2		к <u>р</u> 4	5	/ kg	on		(difference between	
		-	-	•		Ū	7.18			mean and actual value)	
	Α	1.000	1.000	1.002	1.001	1.002	1.001	Ρ, Α		Students are also to be	
	В	1.011	0.999	1.001	0.989	0.995	0.999	NP, A		familiar with recognisin	g
	С	1.012	1.013	1.012	1.014	1.014	1.013	P, NA		precision (spread in the	,
	D	0.993	0.987	1.002	1.000	0.983	0.993	NP, NA	-	data)	
	First, v true va system Then balanc Option Hence not ve	ve comp alue(1.0 natic err we cor e, Opti n B (0.02 Option ry preci	pare the 000 kg). ror (0.0 npare ion A f 22 kg). (B is the ise.	e mean Option 01 kg) the rar nas a s Option	value c A or B nge of maller A is mo r: small	of each has the the rea range re preci est syst	balance same s adings (0.002 ise Opti ematic	for each kg) than on B.			
Q16	Answei	r: B									
	This que Do drav vector o v. $v^2 + 25$ $v = \sqrt{70}$	Speed, testion is w a vect diagram $0^2 = 700$ $\overline{00^2 - 25}$	7 250 H 250 H 10^{2} 10^{2	700 km km h ⁻¹ student am to be ight ang 0 <i>km / h</i>	h ⁻¹ s to find etter und le triang	the mag erstand le, we c	gnitude c what the an use F	of the result e question i Pythagoras	tant v is asl	velocity of the aircraft. king for. Since the rem to solve for speed	

		1	
Q17	(a) B		students should know to use scaled vector triangles to find the sum of two vectors.
	A A + B	2	Students should also know that scale is important for vector diagrams and use double arrows to indicate the resultant vector.
			Students can also use the parallelogram method to find the resultant.
	(b)(i) V _i due east		Students should know how to find changes in vector quantities.
	V_{f} due south	2	Particularly, they should to draw out the diagram that describe the question and know reverse the direction for initial velocity vector. Finally, they should use addition vectors diagram to find Δv .
	(b)(ii) Change in Speed = $25 - 30 = -5 \text{ m s}^{-1}$	1	Students should recognise speed is scalar quantity.
	(b)(iii)		Students should:
	Magnitude $ \Delta v = \sqrt{(v_i^2 + v_f^2)}$ $= \sqrt{(30^2 + 25^2)}$ $= 39 \text{ m s}^{-1}$	1	1) know to find the magnitude of the resultant vector by Pythagoras' Theorem
	$= \tan^{-1} (V_i / V_f)$ = $\tan^{-1} (30/25)$ = 50.2° Hence it is 50.2° W of S.	1	2) know to find the direction from the inverse tangent equation
	(b)(iv) The answers are different, as speed is a scalar and velocity is a vector. For speed, direction is not important, but for velocity, we need to take into consideration of its direction.	1 1	Student should understand the difference between vector and scalar quantities.

	Assignment Questions		SIOs / Notes
A1	Ans: D Energy	1	Students need to express derived units as products or quotients of the base
	$Intensity = \frac{1}{Area \times time}$		units and use the named units listed in 'Summary
	[Intensity] = {[Force][distance]}/{[area][time]} = (kg m s ⁻² x m) / (m ² x s) = kg s ⁻³		of Key Quantities, Symbols and Units' as appropriate.

A2	a) $\frac{\Delta L}{L} = \frac{1}{297} = 0.00337 = 0.003$ (1s.f.)	2	Answer should not be in fraction, but always in decimal.
	b) $\frac{\Delta L}{L} \times 100\% = 0.337\% = 0.3\%$ (1s.f.)	2	Students need to know how to calculate
	c) $A = Lb = 297 \times 209 = 62073 \text{ mm}^2$ $\frac{\Delta A}{A} = \frac{\Delta L}{L} + \frac{\Delta b}{b} = \frac{1}{297} + \frac{1}{209}$ $\Delta A = 8.15 \times 10^{-3} \times 62073 = 506 \text{ mm}^2$ $\Delta A \text{ to 1 sf is 500 mm}^2.$ But we should not write $(A \pm \Delta A) = (62073 \pm 500) \text{ mm}^2$ even though A has the same number of decimal places as ΔA , because $(A \pm \Delta A) = (62073 \pm 500) \text{ mm}^2 = (6.2073 \pm 0.05) \times 10^4 \text{ mm}^2$ in standard form, which does not obey the rules. Instead we should write $(A \pm \Delta A) = (62100 \pm 500) \text{ mm}^2 = (6.21 \pm 0.05) \times 10^4 \text{ mm}^2.$ This is consistent with the rules.	1 1	absolute uncertainty in a derived quantity and express the quantity and its uncertainty correctly.
	d) Assuming the thickness of paper is 0.1 mm The diameter of an atom = 10^{-10} m No. of atoms along the length of paper = $297 \times 10^{-3} / 10^{-10}$ = 2.97×10^{9} No. of atoms along the width of paper = $209 \times 10^{-3} / 10^{-10}$ = 2.09×10^{9} No. of atoms along the thickness of paper = $0.1 \times 10^{-3} / 10^{-10}$ = 1×10^{6}	1 1	Student needs to make reasonable estimates of physical quantities included within the syllabus

	Total number of atoms		
	$= (2.97 \times 10^9)(2.09 \times 10^9)(1 \times 10^6)$	1	
	$= 6 \times 10^{24} (1 \text{ s.f.})$	1	
A3	(a) [] represents "units of" [f ²] = [a]/[L] [a] = (s ⁻²) (m) = s ⁻² m	1 1	Students need to observe the units given on the graph, understand the relationship of the equation and bear in mind not all constants are dimensionless.
			Ensure correct use of [] which represents "units of". [] should only be around a physical quantity, not around units.
	(b) Small systematic error as the graph shows that the experimentally obtained line of best-fit passes very close to the origin , which is the expected axes-intercept in the absence of error based on the theoretical equation .	1	In contrast, if the experimentally obtained line of best-fit is significantly far away from the origin, then systematic error is significant.
			Students need to see the connection between the presence of systematic error and a constant shift in all measured values from the theoretically expected values.
			Students need to distinguish clearly between what is "experimentally obtained" and what is predicted from "theory".
	 (c) To reduce the <u>effect of</u> random error through averaging. It is also possible to identify the presence of systematic error and hence correct it. 	1	Random error cannot be avoided. But its effect can be reduced via averaging / drawing best-fit line.

	Supplementary Questions								SIO/ Notes	
S1	a. 3 b. 3 c. 3	or 4	e. f. g.	3 3 2		i. j. k.	1 or 2 3 3	or 3		
	d. 5		h.	4		Ι.	3			
S2 S3	a. 84 b. 7. c. 84 d. 11 a. 9.	46 (3s.f.) 9 (1 d.p.) 40 (2 s.f.) 110 (3 s.f.) 827 x 10 ³	e. f. g. h.	0.2 (1 0.738 5.77 (7.788 d.	d.p.) (3 s.f.) 3 s.f.) (4 s.f.) 1.5 x	10 ⁶ (2 s.f.)			
	b. 5.	$\frac{50 \times 10^{-7}}{2 \times 10^{6}}$		e.	2.6 x	10 ⁻⁵	(2 s.f.)	_		
S4	(a)	2 X 10 ⁻		1.	1.0 X	10				Students need to be
		Base quantities Base units						familiar with the 7 base quantities, and be told		
		MasskilTimeset			ogra	m			that all quantities expressed in base units	
					S	econ	d		3	MUST be expressed in terms of these 7 units.
		Temperature			ŀ	celvir	1			
		Electric current ar			mper	e				
	Amount of substance				mole					
		Luminou	s inten	sity	Ca	ande	а			
	(b) (i) Units of Energy = Units of Work Work = force x displacement moved in the direction of force $W = F \times d$ $[W] = [F] \times [d]$ $= [ma] \times [d]$ $= kg \times m s^{-2} \times m$ $= kg m^2 s^{-2}$ (ii)							1	Students are to recognise that the derived units are to be calculated from their defining equations	
	$F = BIL$ $B = \frac{F}{IL}$ $[B] = \frac{[F]}{[I][L]} = \frac{kg m s^{-2}}{A \cdot m} = kg s^{-2} A^{-1}$								1	
S5		Pref Pico Micr Gig Terr	ix D ro a a		ecimal (<mark>1(</mark> 1 <mark>1</mark> 1	equiv 0 ⁻¹² 0 ⁻⁶ .0 ⁹ 0 ¹²	valent		1 1 1 1	Students are to be familiar with the prefixes and their corresponding order of magnitude factors

S6	a. $9.12 \times 10^{-6} \text{ s}$ b. $3.42 \times 10^{3} \text{ m}$ c. $4.4 \times 10^{-3} \text{ m}$ d. $55 \text{ cm} / \text{ ms} = 5.5 \times 10^{-3} / 10^{-3} = 5.5 \text{ m/s}$ e. $80 \text{ km} / \text{ hr} = 80 \times 10^{3} / (60 \times 60) = 22 \text{ m/s}$ f. $60.5 \text{ cm}^{2} = 60.5 \times (10^{-2})^{2} = 60.5 \times 10^{-4} \text{ m}^{2}$ g. $50.9 \text{ mm}^{3} = 50.9 \times (10^{-3})^{3} = 50.9 \times 10^{-9} \text{ m}^{3}$		Students need to use the prefixes and their symbols.
	h. $70.1 \text{ g mm}^{-3} = 70.1 \times 10^{-3} / 10^{-9} = 70.1 \times 10^{6} \text{ kg m}^{-3}$ i. 30 years = 30 x 365 x 24 x 60 x 60 = 950 x 10^{6} s		
S7	 Ans: D 1) How do we know if the given kinetic energy of the bus is reasonable? It is difficult to guess just the kinetic energy, but it is easier to estimate the mass and speed of the bus. Assuming that the mass of bus is approximately 10 000 kg and speed of bus cannot exceed the speed limit of 70 km/h, the kinetic energy of the bus is roughly = ½ (10000)(70 x 1000/3600) = 97 000 J 2) How do we know if the power rating of a domestic light is reasonable? Available domestic light in the market are unlikely to be as high as 300 W, mostly are 5 W - 100 W. 3) How do we know if the temperature of a hot oven is reasonable? 300 K = 27 °C, and this is definitely not HOT. 4) How do we know if the volume of air in a car tyre is reasonable? To find the volume of air, we just need to find the volume of tyre as air takes up space in the tyre. To find the volume of tyre, we can use the formula 2π²Rr², where R is the radius from the centre of the tyre to the median of the tyre. Estimating the diameter of the tyre is around 50 cm, R is about 20 cm. And the widen of the tyre is approximately 15 cm, hence r is approximately 7.5 cm. Calculate the volume = 22 206 cm³ = 0.02 m³ 	1	Students need to make reasonable estimates of physical quantities included within the syllabus.

	Thus, the volume of air in a car tyre is the closest		
	approximation.		
S8	Ans: B Percentage uncertainty of $\frac{xy^2}{z}$ $= \frac{\Delta x}{x} \times 100\% + 2\left(\frac{\Delta y}{y}\right) \times 100\% + \frac{\Delta z}{z} \times 100\%$ Hence the combination that makes the percentage	1	Students need to assess the uncertainty in a derived quantity by simple addition of actual, fractional or percentage uncertainties or by simple numerical substitution.
S9	$Q = k \frac{r^{3}(p_{1} - p_{2})}{L}$ $p_{1} - p_{2} = 125 - 100 = 25 kPa$ $\Delta(p_{1} - p_{2}) = \Delta p_{1} + \Delta p_{2} = 1 + 1 = 2 kPa$ $\frac{\Delta(p_{1} - p_{2})}{(p_{1} - p_{2})} = \frac{2}{25} = 0.08$ $\therefore \frac{\Delta Q}{Q} = 3 \frac{\Delta r}{r} + \frac{\Delta(p_{1} - p_{2})}{(p_{1} - p_{2})} + \frac{\Delta L}{L} = 3\left(\frac{0.03}{1.55}\right) + 0.08 + \frac{5}{120} = 0.2(1s.f.$	1) 2	Students can let y be $(P_1 - P_2)$. So if y = $P_1 - P_2$, then finding Δy and hence $\Delta y/y$ will be easier. Absolute, fractional and percentage uncertainties should be expressed to 1
\$10	Ans: D	1	Sig. Tig.
	Let $r = d_1 - d_2 = 64 - 47 = 17$ $\Delta r = \Delta d_1 + \Delta d_2 = 2 + 1 = \pm 3 \text{ mm}$ $\frac{\Delta r}{r} \times 100\% = \frac{3}{17} \times 100\% = 17.6\% = 18\% \text{ (2sf)}$		how to calculate percentage uncertainty in a derived quantity.
S11	Ans: A Make g as the subject, $g = 4\pi^2 \left(\frac{L}{T^2}\right)$ Hence, percentage uncertainty of g $= \frac{\Delta L}{L} \times 100\% + 2 \left(\frac{\Delta T}{T}\right) \times 100\%$ Therefore, $2\% = \frac{0.05}{6.25} \times 100\% + 2 x$ (percentage uncertainty of T) Percentage uncertainty of T = 0.6 %	1	Students need to assess the uncertainty in a derived quantity by simple addition of actual, fractional or percentage uncertainties or by simple numerical substitution.
S12	Fractional uncertainty of η , $\frac{\Delta \eta}{\eta} = 2\left(\frac{\Delta r}{r}\right) + \frac{\Delta v}{v}$ $= 2\left(\frac{0.01}{0.83}\right) + \frac{0.002}{0.065}$ $= 0.055$ Therefore, absolute uncertainty of η ,	1	Students need to assess the uncertainty in a derived quantity by simple addition of actual, fractional or percentage uncertainties or by

	$\Delta \eta = 0.055 \text{ x} \frac{kr^2}{r}$		simple numerical
	= 0.055 x 93.7 (0.83 x 10^{-3}) ² / 0.065	2	substitution.
	= 5 x 10 ⁻⁵ kg m ⁻¹ s ⁻¹	2	
	$\eta = (90 \pm 5) \times 10^{-5} \text{ kg m}^{-1} \text{ s}^{-1} \text{ or } (9.9 \pm 0.5) \times 10^{-4} \text{ N m}^{-2} \text{ s}^{-1}$	1	
S13	Ans: A	1	Students need to show
			an understanding of the
	The rest of options are attempted to reduce the effect of		distinction between
	random errors.		systematic errors
			(including zero errors)
C1 4	A	1	and random errors.
514	Ans: C	T	Students need to show an
	Procision is related to random error. For high precision, it		distinction botwoon
	means that the readings have low random error (hence		systematic errors
	readings are more précised) Accuracy is related to		(including zero errors)
	systematic error and hence low accuracy refers to high		and random errors and
	systematic error (average value of readings deviate from		show an understanding
	the true value).		of the distinction
	,		between precision and
			accuracy.
S15	Ans: C	1	Students need to
	Random errors may be identified and its effect reduced but		distinguish that random
	cannot be avoided (inherent in the measurement process;		errors cannot be
	the scattering on the graph remains).		eliminated.
	The scatter of the readings on the graph identifies random		
	errors.		
	Drawing the line of best fit has the same effect as taking		
	average. Thus, this will help to reduce the effects of random		
	errors (Not Option A)		
	It is also possible to identify "out of trend" or poor readings		
	(Not Option B)		
	If there is a systematic error, the readings will consistently		
	be larger or smaller than the true readings. Consequently,		
	the line of best fit will be shifted in a particular direction by		
	a particular amount on the graph. Thus, it may be possible		
	to identify systematic error and systematic error can be		
	corrected by either adding (if negative error) or subtracting		
	(if positive error) the difference between the line of best fit		
	and the theoretically expected line. (Not Option D)		

¹'Difference of velocity' / 'Change in velocity' is also a vector. Whenever you are asked to determine a vector, specify both magnitude & direction.