

Paper 2 Structured Questions

s/n	Answer	Marks
1(a)	Velocity is the rate of change of displacement	B1
	Examiner comments Well done by those who memorized the definition. Students are reminded to use definitions from EJC notes as extra words or lack of key words used may unintentionally convey a different meaning.	
1(b)	$v^2 = u^2 + 2as$ = 2(4)(30) = 240	M1 Correct
	v = 15.49 = 15.5 m s ⁻¹ (3 s.f.)	substitution A0
	Examiner comments	
	The given acceleration of 4 m s ⁻¹ along the slope is due to the resultant force of the weight of the car, the normal force on the car by the slope, and the friction on the car by the slope.	
	Being a "show" question, it was crucial that the substitution to the correct formula is shown clearly.	

s/n	Answer	Marks
1(c)	Method 1 $u_x = v_x = 15.5 \cos 27^\circ = 13.81 \text{ m s}^{-1}$	C1
	Taking downward as positive: $v_y^2 = u_y^2 + 2a_ys_y = (15.5 \sin 27^\circ)^2 + 2(9.81)(40)$ $v_y = 28.9 \text{ m s}^{-1}$	C1
	$v = \sqrt{13.8^2 + 28.8^2} = 32 \text{ m s}^{-1}$ or 32.0 m s ⁻¹ $\theta = tan^{-1}\frac{28.9}{13.81} = 64^\circ$ or 64.5° to the horizontal	A1 A1
	Method 2 Gain in KE = Loss in GPE $\frac{1}{2}m(v^2 - u^2) = mgh$ $\frac{1}{2}m(v^2 - 15.5^2) = m(9.81)(40)$ $v = 32 \text{ m s}^{-1}$ $\theta = \cos^{-1}\frac{15.5 \cos 27^{\circ}}{32} = 64^{\circ}$ to the horizontal Examiner comments After point B, the only force acting on the car is its vertically downward weight. The direction of the velocity of the car at point B has both horizontal and vertical components.	
1(d)	Consider vertical direction taking downwards as positive: $s = ut + \frac{1}{2} at^2$	
	40 = $(15.5 \sin 27^{\circ})t + \frac{1}{2}(9.81)t^{2}$ t = 2.22 s or -3.66 (rejected)	M1
	Examiner comments Since the horizontal component of the velocity of the car does not change and horizontal displacement is not given, candidates should use only the vertical component of the velocity to calculate time.	AI

s/n	Answer	Marks
2(a)	Hooke's Law states that the change in length of a material is directly proportional to the force applied on it, provided that the limit of proportionality is not exceeded. <u>Marker's Comments</u> Most students were penalised for missing out / replacing "limit of proportionality" with other terms.	B1
2(b)	$W = 0.5 Fx = 0.5 (290 \ 000)(0.15)$ = 21 800 J Marker's Comments Generally well done. It is possible to obtain the value of <i>k</i> and find EPE using the formula: EPE = $\frac{1}{2} \text{ k } x^2$.	C1 A1
2(c)	$F = ma = m \left \frac{v - u}{t} \right = (2.8 \times 10^4) \left \frac{0 - 71}{3.5} \right = 568000 \text{ N}$ $2T \cos 12.5^\circ = 568000$ $T = 291000 \text{ N}$ $\frac{\text{Marker's Comments}}{\text{Generally well done.}}$ $\text{Generally well done.}$ Common mistakes: 1. Assume velocity = 70 ms ⁻¹ at time = 2 s (Look carefully!) 2. Did not resolving the tension as shown in Fig. 2.1	M1 (acceleration) M1 (2 <i>T</i> cos12.5°) A1

s/n	Answer	Marks
2(d)	Identify all forces1. Normal contact force2. Weight3. F _{engine} / Force by air on plane4. Friction (on wheels)5. Force by wire on plane (Tension)	B1
	<u>Correct direction & relative lengths & proper label for all</u> Normal contact force, Weight (same length, opposite direction) Forward forces: F _{engine} OR Force by air on plane Backward forces: Air resistance, friction (on wheel), force by wire	B1
	Fengine Friction Tension	
	 Marker's Comments No marks awarded if any of the forces are missing. (optional: air resistance) Rationale for direction of forces: Arrester wire system gives rise to tension (backwards) F_{engine} is forward because engines pushed to full power. Wheels are free rolling, hence the friction on the wheel is backwards. (Refer to H204 Forces Notes: Pg 9 Example 5) Normal contact upwards and weight downwards. Air resistance is optional because it is unclear in the question regarding the speed of the aircraft when the force diagram was drawn. Air resistance can be negligible if the aircraft is travelling at a low speed. 	

s/n	Answer	Marks
3(a)	The linear momentum of a body is the product of its mass and its velocity.	B1
	Markav's Comments	
	<u>Marker's Comments</u> Well done across cohort	
3(b)(i)	Relative speed of approach = Relative speed of separation	
	Taking to the right as positive,	
	$\boldsymbol{U}_1 - \boldsymbol{U}_2 = \boldsymbol{V}_2 - \boldsymbol{V}_1$	
	$4.5 - (-2.8) = v_2 - (-1.8)$	B1
	$v_2 = 5.5 \text{ m s}^{-1}$	A0
	To the right.	A1
	Marker's Comments	
	A handful of students did not show the equation $\mu_{r} = \mu_{r} = v_{r} = v_{r}$	
	As this is a "show" question, working must be very clear as that is	
	what markers are looking out for.	
	A1 mark for "Right" will be awarded regardless of the earlier proof.	
3(b)(ii)	By conservation of linear momentum,	
	$m_1 u_1 + m_2 u_2 = m_1 v_1 + m_2 v_2$	
	$(0.050)(4.5) + m_2(-2.8) = (0.050)(-1.8) + m_2(5.5)$	B1
	$m_2 = 38 \text{ g}$	A1
	Marker's Comments	
	Generally well done.	
	Students must be aware that momentum is a vector.	
3(c)	By conservation of linear momentum.	
()	$m_1 u_1 + m_2 u_2 = (m_1 + m_2) v$	
	(0.050)(4.5) + (0.038)(-2.8) = (0.050 + 0.038)(v)	- /
	$v = 1.35 \text{ OR } 1.4 \text{ m s}^{-1}$	B1 A1
	Marker's Comments	
	Generally well done.	
	Students must be aware of that the implication of a perfectly inelastic	
	collision is the objects having the same final velocity.	

s/n	Answer	Marks
4(a)	Velocity is a vector quantity and has both magnitude and direction. Since the object in a circular path keeps <u>changing direction</u> despite a constant speed, it has a <u>changing velocity</u> over time.	54
	Since acceleration is the rate of change of velocity , the object has acceleration.	В1
	Marker's Comments	B1
	Skill demonstrated (or to learn): From definition of "acceleration", work backwards to argue that velocity has changed due to the changing direction of the object. Then phrase answer from the <i>starting condition in question</i> (object moving in circular path) to the <i>ending condition</i> (has acceleration).	
4(b)(i)1.	Loss in GPE = $mg(2R sin 30^\circ)$	
	$=(0.10)(9.81)2(0.15)\sin 30^{\circ}$	M1
	$= 0.15 \text{ m s}^{-1}$	
	<u>Marker's Comments</u> Being a "show" question, it was crucial that the mathematics to the drop in height from P to Q is <i>shown</i> clearly.	
4(b)(i)2.	Work done against air resistance	
	= Force × distance	
	$= (F_R) \left(\frac{60}{360} \times 2\pi \times R \right)$	
	$= (0.14) \left(\frac{60}{360} \times 2\pi \times 0.15 \right)$	M1
	= 0.022 OR 0.0220 J	
	Marker's Comments	
	Being a "show" question, it was crucial that the mathematics to the distance along the arc from P to Q was <i>shown</i> clearly.	
4(b)(i)3.	By principle of conservation of energy,	B1
	loss in gravitational potential energy	statement
	- gain in kinetic energy + work done against resistive forces	
	$0.15 = \frac{1}{2} (0.100) \nu^2 + 0.0220$	
	$v = 1.6 \text{ m s}^{-1}$	A1
	Marker's Comments	
	Part 4(b)(i)1,2 were meant to scaffold your answer towards part 3. As such, the values you were asked to prove for gravitational potential energy and work done in part 1, 2 should have been used in part 3. This also means, even if you could not work out 4(b)(i)1,2, you could have used the earlier values provided in this part.	

s/n	Answer	Marks
5(a)	Newton's law of gravitation states that the gravitational force of attraction between two point masses is directly proportional to the product of the masses and inversely proportional to the square of separation between the masses <u>Marker's Comments</u> Full definition from EJC notes expected. Well done by those who memorized the definition. Most common issue is missing out the "2 <u>point</u> masses" – this was highlighted by Cambridge examiners previously as well.	B1
5(b)(i)	$F = \frac{GM_1M_2}{r^2}$ = $\frac{6.67 \times 10^{-11} \times 2.0 \times 10^6 \times 1.4 \times 10^{30}}{(8.0 \times 10^{10})^2}$ = 2.9×10^4 OR 2.92×10^4 N Marker's Comments Mostly well done. Most common error is student forgetting to square the distance during the substitution step even though he/she wrote it in the formula above.	B1 A1
5(b)(ii)	$\Delta U = U_f - U_i$ $= -\frac{GM_1M_2}{r_f} - (-\frac{GM_1M_2}{r_i})$ $= (6.67 \times 10^{-11})(2.0 \times 10^6)(1.4 \times 10^{30})\left(-\frac{1}{4.0 \times 10^{10}} + \frac{1}{8.0 \times 10^{10}}\right)$ $= -2.33 \times 10^{15} \text{ J or } -2.3 \times 10^{15} \text{ J}$ $\frac{\text{Marker's Comments}}{\text{Reminders}}$ $= \text{Gravitational potential energy MUST have negative sign.}$ $= \text{Change'': final minus initial}$ $= \text{When calculating for gravitational potential, the "M" in the formula MUST be the mass of the planet (the mass that set up the gravitational field) and NOT the mass of the asteroid.}$	M1 A1 concept of "change" as <i>final</i> minus <i>initial</i> must be there

s/n	Answer	Marks
5(b)(iii)	 Differentiating Question [2m] Shaded area represents the work done by gravitational force on the asteroid 	B1 all points seen
	 and is equivalent to the <u>loss</u> in gravitational potential energy OR <u>gain</u> in kinetic energy of the asteroid in the absence of an external force Marker's Comments Learning points: Area under a <i>force</i>-distance graph gives the work done by <i>that</i> force on the object in question (in this case, it is the gravitational force acting on the asteroid) If the shaded area is explained as "work done by external force", the assumption of no change in kinetic energy of the asteroid must be provided. (Because "work done by external force as object moved from infinity to P = loss in gravitational potential energy" is only valid in the context when kinetic energy of the asteroid is constant) 	B1 must have gain/loss of specific energy to get credit

s/n	Answer	Marks
6(a)	$I = \frac{P}{\text{Area}}$	
	$=\frac{E}{4\pi r^2}$	
	$=\frac{2.5}{1-(x)^2}$	M1
	$4\pi(1)$	correct substitution
	= 0.199 = 0.20 W m ⁻²	into formula
	Marker's CommentsGenerally well done.For "Show" question, best practice is1. Physics concept (statement and/or formula, depending on context)2. Clear substitution3. Answer in more sf than necessary4. Final value as asked for in question.	
6(b)	$I \propto A^2$	
	$\frac{I_R}{I_Q} = \left(\frac{A_R}{A_Q}\right)^2$	
	$\frac{0.20}{1.0} = \left(\frac{A_R}{4.0 \times 10^{-6}}\right)^2$	C1
	$A_R = 1.79 \times 10^{-6}$ or 1.8×10^{-6} m	
	=1.79 <i>µm</i> or 1.8 <i>µm</i>	A1
	<u>Marker's Comments</u> Since $I_R = 0.20$ W m ⁻² is defined by the question in part (a), students have no choice but to use this value in subsequent calculations.	
6(c)	$P = I(Area) \implies P \propto I(Area)$	
	$\frac{P_R}{P_Q} = \frac{I_R}{I_Q} \frac{Area_R}{Area_Q} = \left(\frac{0.20}{1.0}\right) \left(\frac{1}{2}\right)$ $= 0.10$	C1 A1 must give in
	Marker's Comments Again, students are expected to use $I_R = 0.20$ W m ⁻² as defined by the question in part (a) for their calculations. Answer should be expressed in decimal to the correct s.f. Some students confused <i>Area</i> with <i>Amplitude</i> in the formula. Students are advised to use different symbols to represent each.	decimal

s/n	Answer	Marks
6(d)	There is no loss of energy from the wave due to dissipative forces as it travels. OR Total energy of wave spreading out from the source remains constant.	A1
	Marker's Comments The question refers to power "received". Some students misunderstood it to be power "absorbed" and commented on the detectors' efficiency. This is incorrect.	

s/n	Answer	Marks
7(a)	Frequency of wave:	B1
	 number of wavefronts/ crests/ troughs 	
	passing a point <u>per unit time</u> (NOT per sec)	
	or	
	 number of oscillations <u>per unit time</u> (NOT per sec) 	
	of the source/ of a point on the wave.	
	Wavelength of wave:	
	 distance moved by wavefront/ energy 	B1
	during one cycle/ oscillation/ period	
	of the source/ point on wave	
	or	
	 [minimum distance between 2]/ [distance between 2 adjacent (NOT consecutive, NOT successive)] 	
	[wavefronts]/[create or troughs]/[points having the same	
	displacement and moving in same direction]/ [points on the	
	wave with same phase]	
	e.g. "Wavelength is the <u>minimum distance between 2</u>	
	points on the wave with the same phase."	
	Speed of a wave	D4
	distance move by a wavefront in 1 period	BI
	time between adjacent wavefronts	
	minimum distance between 2 points on wave with the same phase	
	1 time period	
	λ	
	$=\frac{1}{T}=t\lambda$ since $t=\frac{1}{T}$	A0
	, , ,	
	Marker's Comments	
	Definitions must be clear, precise and unambiguous. Students who	
	used unclear terms or wrote unclear statements will be penalised.	
	For example, "successive" or "consecutive" refers to time sequence,	
	and is not the same as adjacent, which refers to spatial sequence.	
	The question clearly wants students to use the definitions of f and λ to	
	derive the equation $v = f\lambda$. Hence the workings for the derivation must	
	refer to the definitions, either by using word equation or writing separate	
	statements of explanation. Only a few students made the link in their	
	derivation. Worse, some students started with $V = t\lambda$ and tried to work backwards'. This does not answer the question	
	שמעשמועס . דווס עטבס ווטג מוזמשבו גווב עעבטנטוו.	
	Note that 1 period for a wave is the	
	time bet adj wavefronts/pts in phase	
	 snortest time bet wavefronts/pts in phase time for 1 easil/wibration/avails of equirac/ at an wave 	
	unie for i oscili/vibration/cycle of source/ pr on wave	

s/n	Answer	Marks
8(a)	Spring constant and mass are constants. \Rightarrow acceleration is proportional to displacement from equilibrium position	B1
	The negative sign in the equation indicates that the direction of acceleration is opposite to the direction of displacement	B1
	Marker's Comments Important for students to be aware of the need to be concise and precise with their answers to qualitative questions.	
	Explicit links are to be made between constants m and k with direct proportionality relationship between acceleration and displacement and between negative sign and acceleration being opposite in direction to displacement.	
	Merely rewriting the SHM equation $a = -\frac{k}{m}x$ and then mentioning that a is proportional to m and a is opposite in direction to x WITHOUT describing the above links is NOT acceptable	
8(b)(i)1.	$v_o = \omega x_o = \frac{2\pi}{T} x_o = \frac{2\pi}{0.84} (0.040)$	M1
	= 0.30 OR 0.299 m s ⁻¹	A1
	Marker's Comments Common mistake is to express the amplitude, x_0 as 34 cm instead of measuring x_0 with respect to the equilibrium position. Another common mistake is to supposedly find gradient of tangent of <i>x</i> - <i>t</i> graph at equilibrium position but instead, taking gradient of straight line joining two coordinate points ON the graph itself.	
8(b)(i)2.	$KE = \frac{1}{2}m\omega^2 \left(x_o^2 - x^2\right) = \frac{1}{2} \left(\frac{1.4}{9.81}\right) \left(\frac{2\pi}{0.84}\right)^2 \left(0.040^2 - 0.020^2\right)$	C1
	$= 4.8 \times 10^{-3}$ OR 4.79×10^{-3} J	A1
	<u>Marker's Comments</u> Similar to above question, a common mistake is to take $x_0 = 0.340$ m and $x = 0.320$ m. Correct understanding of displacement is measurement with respect to equilibrium position.	

s/n	Answer	Marks		
8(b)(i)3.	Method 1:			
	Consider lowest point of the oscillation.			
		M1		
	TE - EPE $-\frac{1}{4x^2} - \frac{1}{14} (0.34 - 0.12)^2$	Spring		
	$12 - 2FE = \frac{1}{2}x^{2} - \frac{1}{2}(\frac{1}{0.18})(0.34 - 0.12)$	constant calculation		
	= 0.19 OR 0.188 J	A1		
	Method 2:			
	Consider highest point of the oscillation.			
	TE = EPE + GPE .since KE = 0.			
	TE = EPE + GPE = $\frac{1}{2}kx^2 + mgh = \frac{1}{2}\left(\frac{1.4}{0.18}\right)(0.14)^2 + (1.4)(0.080)$			
	-0.10 OR 0.188 J			
	-0.19 OK 0.100 3			
	Marker's Comments			
	Relatively few get this question correct.			
	Most equate total energy to be equal to max kinetic energy without realising that at the position of max kinetic Energy (i.e. at equilibrium			
	position), the system still possesses elastic and gravitational potential			
	energies.			
8(b)(ii)1	1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 =			
0(0)(1)11	Optimust on immersed portion, $U = V \rho_{fluid} g = (20 \times 10^{-4})(1000)(9.81)$			
	= 0.196 N	C1		
	Net force on spring $E = W_{1}/U_{2}$			
	-1.40 - 0.196			
	- 1.20 N	C1		
	- 1.20 1	01		
	From Fig. 9.2. <i>l</i> = 27.5 cm	• •		
	OR	A1		
	Extension of spring, $e = \frac{F}{L}$			
	К 1.20			
	$=\frac{1.20}{(1.4/18 \times 10^{-2})}$			
	= 0.155 m			
	New length of spring $= 0.120 + 0.155 = 0.275$ m			
	Marker's Comments			
	Common mistakes:			
	 inability in finding the new total length of the spring after correctly 			
	obtaining the net force on the spring.			
	trivial mistakes.			

s/n	Answer	Marks
8(b)(ii)2.	 Amplitude decreases exponentially with time Period increases with time Oscillations eventually come to a stop. Marker's Comments The liquid in Fig. 8.4 should be interpreted as providing some form of damping to M. However, since M is oscillating as given in question, any conditions/features of a body subjected to critical or heavy damping are NOT acceptable. Only features of light damping were accepted. Statement such as "speed of oscillation is slower" or anything related to that is considered as vague and not acceptable. 	B1 B1 (any valid reason 1 mark, max 2 marks)

s/n	Answer	Marks
9(a)	The Principle of Superposition states that	B1
	when two or more waves meet and overlap,	
	the resultant displacement is the	
	vector sum of the displacement of each individual wave	
	Marker's Comments	
	Well done by those who memorized the definition.	
	Common mistakes.	
	"waves meet and overlan"	
	"resultant"	
	"vector"	
	2. Using "amplitude" instead of "displacement"	
0 //->		D 4
9(D)	1. Waves of the same type meet and overlap / superpose	B1 B1
	2. Waves from the sources have constant phase difference with each	ы
		B1
	3. If waves are transverse, they are either unpolarised or polarized in	
	the same plane	
	Marker's Comments	
	Well done by those who memorized the definition	
	Common mistakes:	
	1. Quoted the conditions for formation of stationary waves	
	2. Missing words "same type" and/or "meet" and/or "transverse"	
	3. Mixed up the statement "either unpolarised or polarized in the	
	same plane"	
9(c)(i)1.	The figure shows an interference pattern (pattern of maxima and	B1
()()	minima) over the region of space where the microwaves meet and	
	overlap/superpose.	
	Marker's Comments	
	well done by those understood the question. Interference pattern can	
	only be observed when the waves are concretent.	
9(c)(i)2.	The microwaves from the 2 slits interfere to produce a central minima .	B1
()()	(Since the path difference of the 2 waves is zero, the only way the	
	centra position is a minima is that the 2 waves are emitted in antiphase)	
	Marker's Comments	
	therefore the waves are in antiphase	

s/n	Answer	Marks
9(c)(i)3.	The interference pattern has non-zero minimum at P.	B1
	Marker's Comments Most candidates missed out stating that non-zero minimum was observed at position P. Position P is the only conclusive point since it is the position where the path difference of the waves is zero. At other positions, the incomplete destructive interference could be due to the different distance travelled by each wave and thus having different displacements when interfering to give non-zero minima.	

s/n	Answer		Marks
9(c)(iii)	Phase difference at central minimum is π . Phase difference at 1 st maximum is 2π . By proportion, $\frac{\Delta \phi}{\pi} = \frac{3 \text{ sq}}{5 \text{ sq}}$ $\Delta \phi = 0.6\pi$ rad Total phase difference $= \phi_{\text{ source}} + \phi_{\text{ path difference}}$ $= \pi + 0.6\pi = 1.6\pi$	$\begin{array}{c} 2\pi \\ 4 \\ 3 \\ 2 \\ 1 \\ \pi \end{array}$	C1 A1
	 = 5.0 rad Marker's Comments Poorly done. Common mistakes: 1. Phase difference formula used incorrectly. 2. Fail to include the phase difference due the wave be antiphase. 	wing emitted in	
9(c)(iv)	 Microwave undergoes diffraction after passing through each of the double slits. The single slit diffraction envelope tapers off towards both sides, making the intensities of higher order maxima lower. OR Intensity of the microwave decreases with distance from the slit. At the locations of higher order maxima, microwaves from both slits must travel longer distances, thus resultant intensities at higher order maxima are lower. Marker's Comments Most candidates could not explain the effect correctly. The idea of single slit diffraction envelope should be shown. Some candidates also wrongly stated that energy or power is dissipated or lost to the environment. Rather, due to the wave spreading and propagation, the energy/amplitude/intensity of the wave decreases with distance. Candidates should not use formula in their explanation without explaining each of the variables. 		В1