Class	Index Number	Name
21S		

ST. ANDREW'S JUNIOR COLLEGE JC 2 2022 Preliminary Examination

PHYSICS, Higher 2

9749/03

15th September 20222

Paper 3 Longer Structured Questions hours

Candidates answer on the Question Paper. No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your name, index number and Civics Group in the spaces at the top of this page. Write in dark blue or black pen on both sides of the paper. You may use an HB pencil for any diagrams or graphs. Do not use staples, paper clips, glue or correction fluid.

The use of an approved scientific calculator is expected, where appropriate.

Section **A** Answer **all** questions.

Section **B** Answer **one** question only.

You are advised to spend one and a half hours on Section A and half an hour on Section B.

The number of marks is given in brackets [] at the end of each question or part question.

For Examiner's Use			
Section A			
1	/ 9		
2	/ 8		
3	/ 11		
4	/ 8		
5	/ 6		
6	/7		
7	/ 11		
Section B			
8	/ 20		
9	/ 20		
Total	/ 80		

This document consists of **24** printed pages including this page.

permeability of free space permittivity of free space

elementary charge the Planck constant unified atomic mass constant rest mass of electron rest mass of proton molar gas constant the Avogadro constant the Boltzmann constant gravitational constant acceleration of free fall

Formulae

uniformly accelerated motion work done on/by a gas hydrostatic pressure gravitational potential temperature pressure of an ideal gas mean translational kinetic energy of an ideal gas molecule displacement of particle in s.h.m. velocity of particle in s.h.m.

electric current resistors in series resistors in parallel

electric potential

alternating current/voltage

magnetic flux density due to a long straight wire

magnetic flux density due to a flat circular coil

magnetic flux density due to a long solenoid radioactive decay

decay constant

 $\mu_0 = 4 \pi \times 10^{-7} \text{ H m}^{-1}$ $\varepsilon_0 = 8.85 \text{ x } 10^{-12} \text{ F m}^{-1}$ $= (1/(36\pi)) \times 10^{-9} F m^{-1}$ $e = 1.60 \times 10^{-19} C$ $h = 6.63 \times 10^{-34} \text{ J s}$ $u = 1.66 \times 10^{-27} \text{ kg}$ $m_{\rm e} = 9.11 \text{ x} 10^{-31} \text{ kg}$ $m_{\rm p} = 1.67 \text{ x } 10^{-27} \text{ kg}$ $R = 8.31 \text{ J K}^{-1} \text{ mol}^{-1}$ $N_{\rm A} = 6.02 \text{ x } 10^{23} \text{ mol}^{-1}$ $k = 1.38 \text{ x} 10^{-23} \text{ J} \text{ K}^{-1}$ $G = 6.67 \text{ x} 10^{-11} \text{ N} \text{ m}^2 \text{ kg}^{-2}$ $g = 9.81 \text{ m s}^{-2}$

2

$$s = ut + \frac{1}{2} a t^{2}$$

$$v^{2} = u^{2} + 2 a s$$

$$W = p \Delta V$$

$$p = \rho g h$$

$$\phi = -\frac{Gm}{r}$$

$$T/K = T/^{\circ}C + 273.15$$

$$p = \frac{1}{3} \frac{Nm}{V} \langle C^{2} \rangle$$

$$E = \frac{3}{2} kT$$

$$x = x_{o} \sin \omega t$$

$$v = v_{0} \cos \omega t$$

$$v = \pm \omega \sqrt{x_{0}^{2} - x^{2}}$$

$$I = Anvq$$

$$R = R_{1} + R_{2} + \dots$$

$$1/R = 1/R_{1} + 1/R_{2} + \dots$$

$$V = \frac{Q}{4\pi\varepsilon_{0}r}$$

$$x = x_{o} \sin \omega t$$

$$B = \frac{\mu_{0}I}{2\pi d}$$

$$B = \frac{\mu_{0}NI}{2r}$$

$$B = \mu_{0}nI$$

$$x = x_{o} \exp(-\lambda t)$$

 $\lambda = \frac{\ln 2}{t_{1/2}}$

Answer **all** the questions in the space provided.

A uniform beam is supported on the edges of two triangular shaped wooden blocks placed on two weighing scales. The weight of the beam is 17.5 N and the distance between the wooden blocks is 800 mm. A metal object of weight 26.5 N is placed 200 mm from one of the blocks. The blocks exert upward forces A and B on the beam.

Calculate the force B.

B = N [2]

(iii) State the magnitude of the sum of the two forces A and B and explain your answer.

.....[2]

(iv) Describe what happens to the forces *A* and *B* as the metal object is gradually moved to the centre of the beam.

 	 	[2]

(b) Fig. 1.2 shows a girl supported by two elastic ropes. She is in equilibrium. Her weight is 392 N.

Determine the tensions T_1 and T_2 in the two ropes.

tension T_1 = N

tension *T*₂ = N [2]

2

(a)

One mole of hydrogen at a temperature of 420 K is mixed with one mole of oxygen at 320 K. After a short period of time the mixture is in *thermal equilibrium*.

6

(i) Explain what is meant by *thermal equilibrium*.

.....[1]

(ii) The kinetic theory of gases leads to the derivation of the equation

$$pV = \frac{1}{3}Nm < c^2 > .$$

Using the formula above and the ideal gas equation, derive an expression for the mean kinetic energy of an ideal gas molecule in terms of the Boltzmann constant, k, and the temperature T.

[2]

(iii) Hence determine the average kinetic energy of a hydrogen molecule *before* the two gases are mixed.

kinetic energy =J [1]

(i) Two different gases at the same temperature have molecules with different mean square speeds. Explain why this is so.
 [2]
 (ii) Explain why in the earth's atmosphere, there is hardly any hydrogen, compared to oxygen molecules.

(a) A mass undergoes simple harmonic motion. For a displacement *x* that is measured from its equilibrium position, the acceleration *a* of the mass *m* is given by the expression

$$a = -\frac{16}{m} x$$

(i) Explain how the expression leads to the conclusion that the mass is performing simple harmonic motion.

(ii) Fig. 3.1 shows the variation of the potential energy of the mass with time.

Calculate

3

1. the frequency for the oscillations of the mass,

frequency = Hz [1]

2. the mass,

mass = kg [2]

3. the amplitude of the oscillations.

amplitude = m [2]

- 4. Mark a point on Fig. 3.1 between 0 and 4 s and mark it as Z when the mass is exactly mid-way between the equilibrium position and amplitude position. [1]
- (b) On Fig. 3.2, sketch a labelled graph of the variation of the velocity with time of the mass for 2 periods.

[2]

- (a) A fire alarm on a wall produces a loud sound during a fire drill in SAJC. The speed and frequency of the sound waves are 330 m s^{-1} and 5000 Hz respectively.
 - (i) Determine the phase difference between any two air molecules which are 3.3 cm apart in the direction of propagation.

phase difference =rad [2]

Hence state whether they are oscillating *in phase* or *in anti-phase*.

(ii) The surface area of a human eardrum is approximately 5.5×10^{-5} m². Calculate the energy received at a person's eardrum given he is at 24 m away from the alarm for 15 s and the average sound intensity at the eardrum is 3.0×10^{-2} W m⁻².

energy =J [2]

(iii) State the assumption that you have made.

.....[1]

(b) Distinguish between a *polarised* wave and an *unpolarised* wave.

.....[2]

4

5

(a) A d.c. supply is connected across a variable resistor. The resistance of the variable resistor is changed. Fig. 5.1 shows the variation of the power P dissipated in the resistance R of the variable resistor.

(i) Use Fig. 5.1 to determine the potential difference across the variable resistor when it dissipates maximum power.

potential difference = V [2]

(ii) Explain why your answer in (i) is not equal to the e.m.f. of the supply.

.....[1]

(b) Fig. 5.2 shows a circuit. The battery has negligible internal resistance.

(i) Determine the number of electrons passing through the battery in a time of 150 s.

number =[1]

(ii) Determine the e.m.f. *E* of the battery.

e.m.f. = V [2]

6

-.--

......[1]

13

(b) The diameter of the cross-section of a long solenoid with 15 turns is 3.2 cm, as shown in Fig. 6.1

Fig. 6.1

A coil **C**, with 85 turns of wire, is wound tightly around the centre region of the solenoid. The magnetic flux density B, in tesla, at the centre of the solenoid is given by the expression

$$B = \pi \times 10^{-3} \times I$$

where *I* is the current in the solenoid in ampere.

(i) Calculate, for a current *I* of 2.8 A in the solenoid, the magnetic flux linkage of the coil **C**.

magnetic flux linkage = Wb [1]

(ii) The current *I* in the solenoid in (b)(i) is reversed in 0.30 s. Calculate the mean e.m.f. induced in coil **C**.

e.m.f. induced = V [2]

Use your answer to **(b)(ii)** to show, on Fig. 6.3, the variation with time t of the e.m.f. E induced in coil **C**. [3]

Fig. 6.3

(a) The	β-decay of nuclei	of tungsten-185 is	spontaneous and	d random.
----------------	-------------------	--------------------	-----------------	-----------

State what is meant by

7

(i) spontaneous decay,

(b) A nuclear reaction between two helium nuclei produces a second isotope of helium, two protons and 13.8 MeV of energy. The reaction is represented by the following equation.

 $_2^3$ He + $_2^3$ He \rightarrow $_2^{\dots}$ He + 2 $_2^{\dots}$ p + 13.8 MeV

- (i) Complete the nuclear equation. [1](ii) Radiation is produced in this nuclear reaction. State
 - **1.** a possible type of radiation that may be produced,
 - why the energy of this radiation is less than the 13.8 MeV given in the equation.

.....

.....[1]

(iii) Calculate the minimum number of these reactions needed per second to produce a power of 60 W.

number =s⁻¹ [2]

(c) Using the data below, calculate in MeV, the energy released in the following reaction.

 $^{2}_{1}H$ + $^{3}_{1}H \rightarrow ^{4}_{2}He$ + $^{1}_{0}n$

The binding energy per nucleon of

- deuterium 2_1H is 1.11 MeV
- tritium ${}^{3}_{1}H$ is 2.66 MeV
- helium ${}_{2}^{4}$ He is 7.20 MeV

energy released =MeV [3]

Section B

Answer **one** question from this Section in the spaces provided.

8 Fig. 8.1 shows an M777 howitzer secured to the ground firing a projectile at an angle of 50° to the horizontal. The projectile exits the muzzle at a speed of 800 m s⁻¹.

Fig. 8.1

(a) (i) Calculate the vertical component of the projectile's initial velocity.

vertical component = m s⁻¹ [1]

(ii) Neglecting air resistance and the height of the howitzer, determine the horizontal range of this projectile.

range = km [3]

(iii) It can be proven that launching the projectile at 40° will achieve the same horizontal range. Suggest one advantage of launching the projectile at this smaller angle.

18

(b) The howitzer is set up to destroy an enemy tank by aiming its projectile to land at the expected position of the moving tank.

The enemy tank, initially stationary, is 3.0 km away from the landing point of the howitzer's projectile as shown in Fig. 8.2.

The tank has a maximum speed of 60 km h^{-1} and a maximum acceleration of 1.0 m s⁻².

(i) Calculate the minimum time required for the tank to reach the landing point of the howitzer's projectile.

time = s [4]

(ii) Determine the time the howitzer should start firing after the tank starts moving so that the projectile will hit the tank.

time = s [1]

- (c) In reality, the projectile experiences a large magnitude of air resistance.
 - (i) In Fig. 8.3(a) and 8.3(b), draw and label the forces acting on the projectile as it is moving up and as it is moving down. [2]

Fig. 8.3(a) Projectile moving up

Fig. 8.3(b) Projectile moving down

(ii) Fig 8.4 shows the variation with time of the vertical velocity of the projectile when the air resistance is negligible from the time it is fired to when it reaches the ground.

On Fig. 8.4, draw a line to show the variation with time of the vertical velocity of the projectile when air resistance is not negligible.

- (iii) Label a point **P** on your line when the projectile's vertical acceleration is equal to the acceleration of free fall. [1]
- (d) (i) State the principle of conservation of linear momentum.

(ii) If the howitzer and the projectile are considered as a system, explain whether the principle of conservation of momentum could be applied to this system during the firing process.

[2]	

(a) Two parallel metal plates in a vacuum are separated by a distance of 15 mm, as shown in Fig. 9.1.

21

A uniform electric field is produced between the plates by applying a potential difference between them.

A particle of mass 1.7×10^{-27} kg and charge +1.6 x 10^{-19} C is initially at rest at point A on one plate. The particle is moved by the electric field to point B on the other plate. The particle reaches point B with kinetic energy 2.4×10^{-16} J.

(i) Define electric field strength.

9

.....[2]

(ii) 1. State whether A or B is at higher potential.

higher potential at[1]

2. Determine the work done by the electric field to move the particle from A to B.

work done = J [1]

3. Use your answer in (a)(ii)2. to determine the force on the particle.

force = N [2]

4. Determine the potential difference between the plates.

potential difference = V [3]

(iii) On Fig. 9.2, sketch a graph to show the variation of the kinetic energy of the particle with the distance *x* from point A along the line AB.

Numerical values for the kinetic energy are not required. [1]

(iv) An electron is placed at A and projected along the direction AB with a kinetic energy less than 2.4×10^{-16} J. Describe the motion of the electron.

(b) A uniform magnetic field normal to the page is produced in the region PQRS. At point X, a gamma-ray photon interaction causes two particles to be formed. The paths of these particles are shown in Fig P

State the condition for a charged particle to experience a force in a magnetic (i) field.[2] (ii) Suggest with a reason, why each of the paths is a spiral, rather than the arc of a circle.[2] (iii) State and explain what can be deduced from the paths about 1. the charges on the two particles[2] 2. the initial speeds of the two particles.[2]

[End of Paper]

1 (a)(i)	For a body to be in rotational equilibrium, the sum of all the anticlockwise moments <u>about any point</u> must be equal to the sum of all the clockwise moments about that <u>same point</u> .	[1]
(a)(ii)	{Given: wt of beam = 17.5 N; wt of object = 26.5 N } Taking moments about wooden block 1, B x 800 = $26.5 \text{ x } 200 + 17.5 \text{ x } 400$	[1]
	B = 15.4 N	[1]
(a)(iii)	Sum of forces A & B = 44 N	[1]
	Since the beam is in (translational) equilibrium, the total force acting downward ($26.5 + 17.5 \text{ N}$) is equal to the total force acting upward (ie A + B).	[1]
(a)(iv)	 Any 2 1. A becomes less and B becomes greater 2. The sum of A and B is constant (= 44 N) 3. Same amount of increase and decrease for A and B. 4. At centre A = B 	[2]
(b)	Vertically: $T_1 \sin 50^0 + T_2 \sin 40^0 = 392 \text{ N}$	ן
	$0.7660T_1 + 0.6428T_2 = 392$ (1)	[1]
	Horizontally: $T_1 cos 50^0 = T_2 cos 40^0$	
	$0.6428T_1 = 0.7660T_2$ $T_1 = 1.192T_2$ (2)	
	Sub (2) in (1): $0.7660(1.192T_2) + 0.6428T_2 = 392$ $1.556T_2 = 392$ $T_2 = 251.9 \text{ N} = 252 \text{ N}$	[1]
	Sub in (2): $T_1 = 1.192(251.9)$ = 300.3 N = 300 N	
	Alternatively, may use the vector triangle.	

JC2 Prelim (H2 Physics) Paper 3 Solution & Post Mortem

2(a)(i)	Both gases are at the same temperature	[1]
	or No <mark>net</mark> flow/transfer of heat between the 2 gases	
(ii)	1	
(")	Since $pV = \frac{1}{3}Nm < c^2 >$,	
	$\frac{1}{2}$ Nm <c<sup>2> = (3/2) pV</c<sup>	
	Since pV = NkT, { ideal gas eqn}	[1]
	$\frac{1}{2}$ Nm <c<sup>2> = (3/2) NkT</c<sup>	
		[1]
	mean KE of a molecule = $\frac{1}{2}$ m <c<sup>2> {NOT: $\frac{1}{2}$ mv²} = (3/2) kT</c<sup>	
(11)		
(111)	{Given: Before mixing, 1 of hydrogen = 420 K}	
	mean KE of a molecule = $\frac{1}{2}$ m <c<sup>2> = (3/2)kT (2/2)(4.28 × 10⁻²³) (420)</c<sup>	[1]
	$= (3/2)(1.38 \times 10^{-9})(420)$ $= 8.69 \times 10^{-21} \text{ J}$	
(b)(i)	Gases at same temp would have same (mean) KE or same $\frac{1}{2}$ m <c<sup>2></c<sup>	[1]
(~)(·)	{since $\frac{1}{2}$ m <c<sup>2> = (3/2)kT }.</c<sup>	[.]
	Since the <u>mass of a molecule/molecular mass</u> for the 2 gases is	[1]
	<u>different</u> ,	
	the mean square speed must be different (so that $\frac{1}{2}$ m <c<sup>2> of the 2</c<sup>	
	can be the same.	
(b)(ii)	{Deduce that both the hydrogen and oxygen molecules are <u>at the same</u> tamp $\frac{1}{2}$ hance the 2 grapped have the same $\frac{1}{2}$ m $\frac{1}{2}$	
	temp & hence the 2 gases have the same /2 m <c>.}</c>	
	Since a hydrogen molecule has a smaller mass than an oxygen	[1]
	molecule , rms speed of $H_2 > rms$ speed for O_2 .(Accept "mean square speed")	
		F - P
	Thus, when compared with O_2 , molecules of H_2 have a <u>higher</u>	[1]
	of Earth	
	{Hence more H_2 than O_2 molecules are expected to leave earth's	
	atmosphere.}	
3 (a)(i)	{Given: $a = -\frac{16}{m} x$ }	

	Since <u>16/m is a constant,</u>	
	<u>acceleration ∞ to its displacement</u> from its equilibrium position.	[1] [1]
	Furthermore <u>acceleration is always directed towards that position</u> as indicated by the negative sign.	[1]
	Thus the block is performing shm as it satisfies the 2 defining conditions of shm.	[1]
(a)(ii) 1	From graph, deduce period of shm $T = 8$ s { NOT: 4 s} $f = \frac{1}{T} = \frac{1}{8} = 0.125$ Hz	[1]
(a)(ii) 2	Comparing $a = -\omega^2 x$ with $a = -\frac{16}{m}x$, $\Rightarrow 4\pi^2 f^2 = \frac{16}{m}$	[1]
	$\rightarrow m = 25.9 \text{ kg}$	[1-ecf]
(a)(ii)3	Max. p.e. $=\frac{1}{2}m\omega^2 x_o^2 = 0.600 \text{ J}$ (fr graph) (deduce $m\omega^2 = 16$)	[1]
	$\rightarrow x_o = 0.274 \text{ m}$	[1]
(a)(ii) 4	Z lies between 0 and 1 s (at 0.67 s) or between 3 and 4 s (at 3.3 s)	[1]
(b)	velocity / m s ⁻¹ 0.215 0.215 0.215 0.215 0.215 0.215 0.215 0.215 0.215 0.215 0.215 0.215 fr (ii)) x (0.274 fr (ii)) = 0.215 m s ⁻¹	[1, shape: cosine or - cosine graph] [1, magnitude of v _{max} and period, allow ecf]
4(a)(i)	From $v = f\lambda$, $\lambda = \frac{330}{5000} = 0.066 m$	[1]
	Phase difference, $\phi = \frac{x}{\lambda} \times 2\pi = \frac{0.033}{0.066} \times 2\pi = \pi$ rad	[1]
	\Rightarrow molecules are in anti-phase.	[1 ecf]

(a)(ii)	Energy received = <i>Power</i> _{received} x time	
	= $(I_{received} \times A_{ear}) t$ = $(3.0 \times 10^{-2}) \times (5.5 \times 10^{-5}) \times 15$ = $2.48 \times 10^{-5} J$	[1] [1]
(a)(iii)	(The plane of) the eardrum is perpendicular to direction of the waves	[1]
(b)	The wave particles <u>oscillate/vibrate</u> (not: move, travel) in <u>one direction</u> in <u>a plane</u> <u>normal</u> to the direction of energy transfer The oscillations of an unpolarized wave can be in any direction (ie not restricted to only one direction).	[1] [1]

5 (a)(i)	$P = \frac{V^2}{V}$ (where $P_{max} = 4.5 \text{ W}$, $R = 2.0$)	
	R r^2	[1]
	$4.5 = \frac{V^{-1}}{1000}$	[1]
	2.0	[1]
	V = 3.0 V	
	Alternatively,	
	$P = I^2 R$	
	$4.5 = 1^2 (2.0)$	
	I = 1.5 A	
	V = IR = (1.5)(2.0) = 3.0 V)	
(a)(ii)	The supply has internal resistance.	[1]
	Hence the answer in (i) + p.d. across the internal resistance = $e.m.f$	
(b)(i)	Q = It	
	Ne = It	
	$N(1.6 \times 10^{-19}) = (0.48 \text{ A})(150 \text{ s})$	
	$N = 4.5 \times 10^{20}$	[1]
(b)(ii)	Given 18 Ω and 36 Ω in parallel:	
	1 1 1	
	$\frac{1}{18} + \frac{1}{36} = \frac{1}{R_{\odot}}$	
	$R_{\rm H} = 12.0$	[1]
	$R_{ll} = 12.32$	1.1
	Total resistance of circuit – $120 \pm 120 - 24.0$	
	F = IP = (0.48)(24) = 11.52 V	[1]
	L = III = (0.40)(24) = 11.32 V	
	$V_{12} = 0.48 \times 12 = 5.76 V$	
	$V_{12} = 0.32 \times 18 = 5.76 \text{ V} (\text{or})/\text{or} = 0.16 \times 36 = 5.76 \text{ V} (11)$	
	$V_{18} = 0.32 \times 10^{-10} = 0.70^{-10} (01^{-10} \times 36^{-10} - 0.10^{-10} \times 30^{-10} = 0.70^{-10} (01^{-10} \times 36^{-10} - 0.10^{-10} \times 30^{-10} = 0.70^{-10} (01^{-10} \times 36^{-10} - 0.10^{-10} \times 36^{-10} = 0.10^{-10} \times 30^{-10} \times 30^{-10} = 0.10^{-10} \times 30^{-10} $	
	$L = v_{12} + v_{18} - 11.32 v$ [1])	
6(2)	Induced a m f in a coil is proportional to the rate of change of magnetic flux	[1]
0(a)	(linkage) of the soil	ניו
	(inikage) of the coll.	
(b)(i)	Elux linkago – NPA (radius of soil – $1.6 \times 10^{-2} \text{ m}$)	
(1)(1)	Flux intrage = INDA (Taulus Of Coll = 1.0 X 10 ⁻⁷ III) $95 \times (-10^{-3} \times 2^{-9}) \times (-10^{-2})^{2}$	
	$= 00 \times (71 \times 10^{-1} \times 2.0) \times (11 \times (1.0 \times 10^{-1}))$	[1]
	$= 0.00 \times 10^{\circ} \times 00.0$	
(b)(::)	$[[h_{12} h_{12} h_{23} h_{$	[1
(II)(a)	Flux linkage change = $(6.00 \times 10^{-4}) - (-6.00 \times 10^{-4})$ Wb	ecfl
	$= 2x 6.00 \times 10^{-4} \text{ Wb} = 12.00 \times 10^{-4} \text{ Wb}$	001

	Mean emf = d(flux linkage)/t where t = 0.30 s = $(12.00 \times 10^{-4} \text{ W/b}) \div (0.30 \text{ s}) = 0.004 \text{ V} = 4 \text{ m/c}$	[1-
	$-(12.00 \times 10^{-10}) \div (0.003) = 0.004 V = 411V$	ecf]
(b) (iii)	0 V from t = 0 to 0.3 s, t = 0.6 to 1.0 s and t > 1.6 s (because when <u>current is const</u> & B = constant, thus <u>flux linkage is const</u> ; hence induced emf = zero, in accordance to Faraday's Law. This must be drawn CLEARLY in the graph)	[1]
	<u>From t = 0.3 to 0.6 s</u> , the current changes as shown in (b) (ii). Hence induced emf = 4 mV (Let a positive sign be given to this emf)	[1]
	From $t = 1.0$ to 1.6 s: the <u>current changes</u> by the <u>same amount</u> as betw 0.3 to 0.6 s, but the <u>time</u> <u>taken is doubled</u> . Hence the magnitude of the induced emf is half that in (b)(ii), ie 2 mV.	
	Since the change in current is <u>from low to high</u> current- opposite to that betw 0.3 to 0.6 s, the <u>induced emf</u> here is opposite in sign to that between 0.3 to 0.6 s, ie - 2 mV.	[1]
- / >		
7(a) (i)	The process <u>cannot be controlled (or affected) by external factors</u> – factors outside (external to) the nucleus, like <u>pressure</u> , temperature. {at least one factor cited}	[1]
(a)(ii)	It is impossible to know when the next disintegration/decay will occur.	[1]
	The probability of decay per unit time of a nucleus is <u>constant</u> .	[1]
	{This answer, "cannot predict <u>which</u> particular nucleus will decay next" is not acceptable.}	
(b)(i)	${}^{3}_{2}He + {}^{3}_{2}He \rightarrow {}^{4}_{2}He + 2 {}^{1}_{1}p + 13.8 \text{ MeV}$	[1]
(b)(ii)1	gamma ray/radiation/photon {Accept: γ -ray, Symbol γ must be clear. It should not look like 'Y'}	[1]
2.	13.8 MeV is the (total) energy released, which = sum of the ke of the	[1]
	products $\binom{4}{2}He$ & the 2 protons) and the energy of the radiation .	
(b) (iii)	<u>products</u> ($\frac{4}{2}$ <i>He</i> & the 2 protons) and the energy of the radiation. {Let $\frac{N}{t}$ be the required minimum number of reactions per second. Since each reaction produces 13.8 MeV, where 1 MeV = 10 ⁶ x 1.6 x 10 ⁻¹⁹ J}	
(b) (iii)	products ($\frac{4}{2}$ <i>He</i> & the 2 protons) and the energy of the radiation. {Let $\frac{N}{t}$ be the required minimum number of reactions per second. Since each reaction produces 13.8 MeV, where 1 MeV = 10 ⁶ x 1.6 x 10 ⁻¹⁹ J} $\frac{N}{t}$ x 13.8 x (10 ⁶ x 1.6 x 10 ⁻¹⁹ J) = 60 W	[1]
(b) (iii)	products ($\frac{4}{2}$ He & the 2 protons) and the energy of the radiation. {Let $\frac{N}{t}$ be the required minimum number of reactions per second. Since each reaction produces 13.8 MeV, where 1 MeV = 10 ⁶ x 1.6 x 10 ⁻¹⁹ J} $\frac{N}{t} x 13.8 x (10^{6} x 1.6 x 10^{-19} J) = 60 W$ $\rightarrow \frac{N}{t} = 2.72 x 10^{13} s^{-1}$	[1]
(b) (iii) (c)	products (⁴ / ₂ <i>He</i> & the 2 protons) and the energy of the radiation. {Let $\frac{N}{t}$ be the required minimum number of reactions per second. Since each reaction produces 13.8 MeV, where 1 MeV = 10 ⁶ x 1.6 x 10 ⁻¹⁹ J} $\frac{N}{t} x 13.8 x (10^6 x 1.6 x 10^{-19} J) = 60 W$ $\rightarrow \frac{N}{t} = 2.72 x 10^{13} s^{-1}$ Energy released = Tot Binding energy of Products – Tot BE of reactants $= (4x 7.20) + 0 (for \frac{1}{0}n) - (2 x 1.11) - (3 x 2.66)$ = 18.6 MeV	[1] [1] [2] [1]

	Section B	
8(a)(i)	$800 \sin 50^\circ = 613 \text{ m s}^{-1} = 6.13 \text{ x} 10^2 \text{ m s}^{-1}$	[1]
(a)(ii)	$s_y = u_y t + \frac{1}{2} a t^2$	
	$0 = 800 \sin 50^{\circ} (t) + \frac{1}{2} (-9.81) (t^2)$	[1]
	t = 125 s {total time of flight}	[1]
	Range = $s_x = u_x t = (800 \cos 50^\circ)x (125) = (514 \text{ m s}^{-1}) x (125 \text{ s})$ = 64.2 x 10 ³ m = 64.2 km [ecf allowed]	[1]
(a)(iii)	Time of flight is shorter { & so the enemy tank has less time to react.	[1]
	{Range = $ucos\theta x$ Time of flight}; NOT because the initial vert velocity is smaller}	
(b)(i)	To find horiz displacement when accelerating at 1 m s ⁻² to its max speed of 60 km km h ⁻¹ (ie to 16.7 m s ⁻¹):	
	$v^2 = u^2 + 2as$ (60000 / 3600) ² = 0 + 2(1)(s) $s_x = 138.89 m$	[1]
	To find time required to reach max speed from rest at max acc of 1 m s ⁻² : $s = ut_1 + \frac{1}{2} at_1^2$ 138.89 = 0 + $\frac{1}{2} (1)(t_1)^2$ $t_1 = 16.67 s$	[1]
	To find time taken to travel remaining distance at max speed: (Initial dist	
	apart = 3000 m) $S_x = ut_2$ $3000 - 138.89 = (60000 / 3600)(t_2)$ $t_2 = 171.67 s$	[1]
	Thus minimum time required = $t_1 + t_2$ = 171.67 + 16.67 = 188.3 s	[1]
	Alternatively,	
	To find time required to reach maximum speed, $v = u + at_1$ $60000 / 3600 = 0 + (1)(t_1)$ $t_1 = 16.67 s$	[1]
	To find the distance travelled while accelerating to max speed, $s = ut + \frac{1}{2} at^2$ $= 0 + \frac{1}{2} (1)(16.67)^2$ = 138.89 m	[1]
	To find the time taken to travel remaining distance at top speed: (Initial separation $= 2 \text{ km}$)	[1]
	$s = ut_2$ 3000 - 138.89 = (60000 / 3600)(t ₂)	[1]

	t ₂ = 171.67 s	
	Minimum time required = $t_1 + t_2 = 171.67 + 16.67 = 188.3$ s	
(b)(ii)	time required = (bi) – Time of flight in (aii) = $188.3 = 125 = 63.3 \text{ s}$	[1- ecfl
(c)(i)	- 100.3 - 123 - 00.3 3	00.]
	Air resistance	[2]
	VVeight	
(c)(ii)	vertical velocity	
	Correct shape with x-intercept before the x-intercept of the original graph	[1]
	Initial speed > final speed Equal area before and after reach may beight $(A = B)$	[1]
		[1]
(c)(iii)	P is the instant when air resistance = 0 , hence, at where vertical velocity = 0 [Refer to the diagram in (c)(ii)]	[1]
(d)(i)	For a system of interacting bodies, the total momentum of the bodies (i.e.	[1]
	provided <u>no net force acts on the system</u> .	[1]
(d)(ii)	It cannot be applied as there is an (horizontal) external force acting on the system.	[1]
	The external force can be: the ground exerting a contact force/friction on the howitzer, or weight of projectile, or air resistance on projectile.	[1]
9(a)(i)	Electric field strength is the force per unit positive charge.	[1] [1]
(ii)1.	A (since the positive charge accelerates from A towards B)	[1]
2.	{ Given: initial speed = 0; KE at plate B = $2.4 \times 10^{-16} \text{ J}$ } Work done by field = KE gain by charge = $2.4 \times 10^{-16} \text{ J}$.	[1]

3.	W = Fs { since F = const} F = W/s { distance betw plates, s = 15 mm = 0.015 m}	[1- ecf]
	$F = 2.4 \times 10^{-16} / 15 \times 10^{-3} = 1.6 \times 10^{-14} \text{ N}$	[1- ecf]
	or alternative method:	
	$KE = 1/2mv^2$	
	$V^2 = U^2 + 2as$ F = ma	
4.	V = E/d = Fd/Q	[1-
	V = W / Q	661]
	E = V/d and $E = F/Q$	
	Pd V = $(1.6 \times 10^{-14} \times 15 \times 10^{-3}) / 1.6 \times 10^{-19}$ or 2.4 × 10 ⁻¹⁶ / 1.6 × 10 ⁻¹⁹	[1- ecf]
	= 1500 V	[1- ecf]
(iii)	straight line with positive gradient starting at origin and ending at $x = 15$ mm.	[1]
(iv)	It will decelerate/slow down	[1]
	and stop before reaching B and accelerate/move to A after a momentary stop	[1]
(b)(i)	Charge must be moving (ie not stationary),	[1]
	with a velocity that is not parallel to the magnetic field.	[1]
(ii)	The speed is decreasing (due to collision with the particles of the medium).	[1]
	This causes the radius to decrease.	[1]
(iii)1.	Since the spirals are in opposite directions,	[1]
	the charges must be oppositely charged.	[1]
2.	Equal <u>initial</u> radius,	[1]
	so equal initial speeds.	[1]

End of solutions