Anderson Serangoon Junior College 2024 H2 Physics Preliminary Examination Mark Scheme

Paper 3 (80 marks)

1ai	Any two of time, temperature, current, (luminous intensity)			
1aii	Any derived quantity, e.g. energy, force, power, velocity, acceleration, pressure, density,	B1		
	etc			
1bi	Percentage uncertainty = $2 + (3x2)$			
	= 8%	A1		
1bii	$(4\pi^2 \times 1.50)$			
	$g = \frac{\sqrt{2}}{2} \frac{48^2}{48^2}$			
	2.40			
	$= 9.63 \text{ m s}^{-2}$			
	Absolute uncertainty = 0.08×9.63			
	$= 0.8 \text{ m s}^{-2}$	C1		
	$g = 9.6 \pm 0.8 \text{ m s}^{-2}$ (Note: g must have same place value as Δg)	A1		

2a	As the sky-diver picks up speed, air resistance increases, the resultant force decreases and hence the acceleration decreases.			
2b	(Since the sky-diver starts from rest), there is no air resistance initially / the only force he experiences is his weight, hence his initial acceleration is equal to 9.81 m s ^{-2} .	M1 A1		
2c	Terminal velocity is the area under the <i>a-t</i> graph (by using trapezium rule/counting squares)	A1		
2d	Correct shape start with zero gradient and ends with constant gradient from about $t = 24.0$ s	M1 A1		

3a	Resultant/net force (in any direction) on the object must be zero and Resultant/net moment / torque on the object about any point / axis must be zero.			
3b	Taking moments about end A, $(W \times 0.25) + (12 \times 0.35) = (17 \sin 50^{\circ} \times 0.50)$ W = 9.246 = 9.2 N			
3c	Consider vertical equilibrium, taking upwards as positive Sum of forces in vertical direction = 0 $F_y + 17 \sin 50^\circ - 9.2 - 12 = 0$ $F_y = 8.177 \text{ N}$ Consider horizontal equilibrium, taking rightwards as positive			
	Sum of forces in horizontal direction = 0 17 cos 50° - $F_x = 0$ $F_x = 10.93 \text{ N}$			
	$F = \sqrt{(8.177^2 + 10.93^2)} = 13.7N$			
3d	By taking moments about end A, The moment due to the force by the block on the beam decreases, , the tension in the string decreases.	M1		
	When the tension in the string deceases at the same angle, by considering <u>horizontal</u> <u>equilibrium</u> , the horizontal component of the force exerted on the beam by the hinge <u>decreases</u> .	A1		

4ai	reduction in energy / amplitude (of the oscillations) due to force opposing motion / resistive forces / dissipative forces				
4aii	4aii amplitude is decreasing (very) gradually / oscillations would continue for a long time / many complete oscillations				
	hence light damping				
4bi	frequency = 1 / 0.3 = 3.3 Hz				
4bii	4bii energy = $\frac{1}{2} mv^2$ and $v = \omega x_0$				
	$= \frac{1}{2} \times 0.065 \times (2 \pi / 0.3)^2 \times (1.5 \times 10^{-2})^2$ = 0.00321 J = 3.2 mJ				
4c	amplitude reduces exponentially / amplitude decreases by a smaller amount (for each oscillation) / does not decrease linearly / decrease at a decreasing rate	M1			
	so amplitude will not be 0.7 cm	A1			
4d	Relevant examples e.g. pointer in ammeter, car suspension system etc. where critical damping is used	A1			

5ai	Using potential divider rule,				
	$V_{BD} = \left(\frac{R_{BD}}{R_{BD} + 1.0}\right) \times 2.0$ $V_{BD} = \left(\frac{4.0}{4.0 + 1.0}\right) \times 2.0 = 1.6 \text{ V}$	C1			
5aii	Since current in Cell Y is zero, V_{BC} = e.m.f. of cell Y	C1			
	$l = \left(\frac{1.5}{1.6}\right) \times 100 = 94 \text{ cm}$	A1			
5b	Replace <u>cell X</u> with another cell with <u>lower internal resistance</u> OR	M1			
	Use a resistance wire of higher resistivity, keeping cross-sectional area and length unchanged OR				
	Use a resistance wire of smaller cross-sectional area, keeping resistivity and length unchanged. OR				
	Use resistance wire with a higher resistance per unit length				
	By potential divider rule, this increases the p.d. across BD and allows a smaller value of l (while keeping current in cell Z zero).	A1			

5c	(When current is zero,) $V_{BC} = e.m.f.$ of cell Z p.d. across internal resistance is zero hence terminal p.d. = e.m.f.	M1
	Distance <i>l</i> remains unchanged.	A1

6a	electric and magnetic fields normal to each other in the same region	M1			
	<i>either</i> charged particles <u>enters region normal</u> to both fields or <u>correct <i>B</i> direction wrt <i>E</i></u> for zero deflection (in drawing)				
	For <u>no deflection</u> , $v = E/B$ or <u>no net force</u> .				
6bi	magnetic force on ion in path B provides for centripetal force	B1			
	By N2L, Bgv = m^{v^2}				
	$m = \frac{rBq}{v} = \frac{\frac{12.3}{2} \times 10^{-2} \times 640 \times 10^{-3} \times 1.6 \times 10^{-19}}{9.6 \times 10^{4}}$ = 6.56 × 10 ⁻²⁶ kg	C1			
	$=\frac{6.56\times10^{-26}}{1.66\times10^{-27}}=40 \text{ u (or 39.5 u)}$	A1			
6bii	Since the ions are of the <u>same isotope</u> , they all have the <u>same mass</u> regardless of the paths undertaken.	B1			
	Using the equation in answer to (b)(i) , the <u>radius of the path is inversely proportional to</u> \underline{q} (or state equation for r)	B1			
	Hence, the ions in path A have thrice the charge compared to ions in path B.	B1			

7a	energy from 1 nucleus = $(1.77 \times 10^{13}) / (6.02 \times 10^{23})$ (= 2.94 × 10 ⁻¹¹ J)					
	Energy released = Binding energy of products – Binding energy of reactants binding energy of Z = $[(1.25 + 1.81) \times 10^{-10}] - 2.94 \times 10^{-11}$ (= 2.77 × 10 ⁻¹⁰ J)	C1				
	nucleon number of Z = 93 + 139 + 2 - 1 (= 233)	C1				
	Binding energy per nucleon of Z = $(2.77 \times 10^{-10}) / (233 \times 1.60 \times 10^{-13}) = 7.43 \text{ MeV} (3 \text{ s.f.})$	A1				
7bi	$N_0 = 0.874 / (238 \times 1.66 \times 10^{-27}) = 2.212 \times 10^{24}$ $= 2.21 \times 10^{24}$	A1				
7bii	$A = \lambda N = \frac{\ln 2}{t_{\frac{1}{2}}} N$					
	$= \frac{\ln 2}{87.7 \times 365 \times 24 \times 3600} \times 2.21 \times 10^{24}$ = 5.54 \times 10^{14} Bq	C1				

7biii	$A = A_0 e^{-\lambda t}$				
	$\ln 0.653 = -(\frac{\ln 2}{87.7})t$	C1			
	<i>t</i> = 53.9 years				
7biv	half-life shorter, will not provide power for long enough / require frequent replacement of probe	B1			
8ai	Horizontal component of tension / spring force provides centripetal force	B1			
	Weight of sphere is (now) equal to the vertical component of tension / spring force OR horizontal and vertical components of tension / spring force combine to give a greater tension in spring	M1			
	Greater tension/spring force so greater extension / since extension is proportional to spring force	A1			
8aii1	Radius, $r = 10.8 \sin 27^\circ = = 4.903 \text{ cm}$ $\approx 4.9 \text{ cm}$	A1			
8aii2	$F_{spring} \cos \theta = \text{mg OR sum of vertical forces} = 0$	B1			
	$F_{spring} = \frac{mg}{\cos\theta} = \frac{0.29 \times 9.81}{\cos 27^{\circ}} = 3.19 \text{ N}$	A1			
	<i>F_{spring}</i> ≈ 3.2 N (shown)				
8aii3	$k = \frac{\Delta F_{spring}}{\Delta x} = \frac{3.2 - (0.29 \times 9.81)}{(10.8 - 8.5)}$	C1			
	$k = 0.15 \text{ N cm}^{-1}$	A1			
8aiii 1	$a = \frac{F_{\text{spring}} \sin \theta}{1} = \frac{3.2 \times \sin 27^{\circ}}{100}$	C1			
•	$a_c = 5.0 \text{ m s}^{-2}$ 0.29 $a_c = 5.0 \text{ m s}^{-2}$	A1			
8aiii 2	$a_c = r\omega^2 = r\left(\frac{2\pi}{T}\right)^2$	C1			
	$T = 2\pi \times \sqrt{(0.049 / 5.0)} = 0.62 \mathrm{s}$	A1			
8bi	From $g = -\frac{d\phi}{dr}$, when the gravitational field strength is zero, the potential gradient at	M1			

that point would be zero. (Thus the point will be a turning point, which is a maximum point.)

Thus, *x* is 0.52 x 10¹² m

Accepted range of $x : 0.50 \times 10^{12} \text{ m} - 0.54 \times 10^{12} \text{ m}$

A1

8bii1	$\Delta U = m\Delta \phi = 180 \times [-14 - (-10)] \times 10^{8}$ = -7.2 x 10 ¹⁰ J	C1
	Change = $7.2 \times 10^{10} \text{ J}$ The change in kinetic energy is an <u>increase</u> .	A1 A1
8bii2	energy required (to reach maximum point) = $180 \times (10 - 4.4) \times 10^8$ or energy per unit mass (to reach maximum point) = $(10 - 4.4) \times 10^8$	C1
	$\frac{1}{2} \times 180 \times v^2 = 180 \times (10 - 4.4) \times 10^{\circ}$ or $\frac{1}{2} \times v^2 = (10 - 4.4) \times 10^{\circ}$	C1
	$v = 3.3 \times 10^4 \text{ m s}^{-1}$	A1

00		N/1
94	$V = \frac{2^2(0.002) + 1^2(0.002)}{10000000}$	
	$\bigvee r.m.s \bigvee 0.01$	
	= 1.0 V	A1
9b	Transmission of electrical energy at high voltage means that the current is low (according	M1
	to $P = IV$ for the same power.	
	Power loss through joule heating (<i>FR</i>) is hence lowered as less electrical energy is	A1
	dissipated as <u>near/thermal energy</u> in the cables of resistance R.	
9ci	V N	
001	$\frac{v_s}{V} = \frac{v_s}{N}$	
	v_{ρ} N_{ρ}	
	$V_{2} = 71 \times 65 \times 10^{-3} = 0.46 \text{ V}$	A1
9cii		
	P/W	
	↑ · · · · · · · · · · · · · · · · · · ·	
	t/s	
	0.020	
	Correct shape: sine squared or cosine squared.	B1
	Correct labelling of values: period of 0.02 s and peak power of 0.080 W.	B1
	Explanation. Power dissipated in the resistor $P = I^2 P$ (square of a size function)	
	Γ ower ussipated in the resistor, $\Gamma = I \cap (square of a sine function)$	

-	-					
	Instantaneous Power P/W e^{-I}			time t		
	W. Also,	the period T = $1/f = 1/50$	= 0.020 s.			
9ciii	The curre	ent flow direction alterna	tes between downwards th	rough R and no current flow	B1	
	with oqur	al time intervals of 0.01 s	/ for half a pariod		R1	
	with equa				ы	
9civ	Since ea eddy/indu	ach sheet is insulated uced currents.	from the others, laminat	ion decreases the size of	M1	
	With the <u>reduced</u> .	same induced emf, the	e <u>heat/thermal energy</u> los	<u>ses</u> in the iron core will be	A1	
9di	An ideal (and temp	gas is one which obeys t <u>peratures</u> .	he equation of state <u>pV = n</u>	RT at all pressures, volumes	A1	
9dii						
		work done on gas / J	heat supplied to gas / J	increase in internal energy of gas / J		
	A to B	+360	0	+360 &		
	B to C	0\$	+670	+670 \$		
	C to D	-810 &	0	-810		
	D to A	0@	-220 @	-220 #		
	&: first ar in	nd third line correct crease in internal energy	y = work done on gas + he	at supplied to gas	B1	
	\$: second	d line correct			B1	
	work done on gas (B to C at constant volume) = 0 J increase in internal energy = 0 + 670 = 670 J					
	#	correct in right hand ask	mn		B1	
	#220 c to th	tal change in internal en us increase in internal e	ergy = 0 J (cyclical proces nergy (D to A) = 810 – 360	s)) – 670 = – 220		
	@: other w th	two figures correct in las ork done on gas (D to A us heat supplied to gas	st line at constant volume) = 0 J (D to A) = – 220 J		B1	

7

9diii	Consider the process D to A,	
	Since the gas is ideal, $\Delta U = \frac{3}{2}nR\Delta T$ From the ideal gas equation, since V is constant, $V\Delta p = nR\Delta T$ For the process D to A, $\Delta U = \frac{3}{2}V\Delta p$	
	→ $-220 = \frac{-}{2}(750 \times 10^{-6})(1 \times 10^{5} - p_{D})$	
	→ p _D = 2.955×10 ⁵ Pa	C1
	Using $p_{\rm D}V_{\rm D} = nRT_{\rm D}$	
	$n = \frac{p_{\rm D}V_{\rm D}}{RT_{\rm D}} = \frac{2.955 \times 10^{5} \times 750 \times 10^{-6}}{8.31 \times 888} = 0.030 \text{mole}$	A1
9div	the gas molecules bounce off the receding/outward moving piston	B1
	hence a <u>decrease in kinetic energy / lower speeds</u> of the gas molecules, leading to lower temperature	B1