Solution Template for 2019 A-level Examination

Subject: H1 Mathematics; Paper: 01

Questi	Suggested Solutions
on	
1	Let $\$A$, $\$B$ and $\$C$ be the price of Style A television, Style B television and Style C television respectively.
	22A + 16B + 8C = 96480 - (1)
	22A - 16B = 3120 - (2)
	2A + 2B + 2C = 13260 - (3)
	Using GC,
	A = 1800
	B = 2280
	C = 2550
	∴ The price of a Style B television is \$2280.
2(i)	Using GC,
	when $y = 0, x = -0.67721$
	\therefore the coordinates of A is $(-0.677,0)$
2(ii)	$x = -\frac{4}{3}$

2(iii)	when $x = 0$, $y = \ln 4$
	\therefore the coordinates of B is $(0, \ln 4)$
	dy_{-1} 3
	$\frac{\mathrm{d}y}{\mathrm{d}x} = 1 + \frac{3}{3x + 4}$
	when $x = 0$,
	$\frac{dy}{dx} = \frac{7}{4}$, hence gradient of tangent at B is $\frac{7}{4}$.
	$\therefore \text{ Equation of tangent at } B \text{ is } y = \frac{7}{4}x + \ln 4$
3(i)	$y = 2x^2 + 6x - 3 \rightarrow (1)$
	$y = 11x + 9 \rightarrow (2)$
	(1)-(2)
	$2x^2 - 5x - 12 = 0$
	(x-4)(2x+3) = 0
	$\therefore x = 4 \text{ or } -\frac{3}{2}$
	substitute $x = 4$ to (2)
	y = 11(4) + 9 = 53
	substitute $x = -\frac{3}{2}$ to (2)
	$y = 11\left(-\frac{3}{2}\right) + 9 = -\frac{15}{2}$ $\therefore x = 4, y = 53 \text{ or } x = -\frac{3}{2}, y = -\frac{15}{2}$
	$\therefore x = 4, y = 53 \text{ or } x = -\frac{3}{2}, y = -\frac{15}{2}$

$$-\frac{3}{2} \le x \le 4$$

4(i) Let
$$y = \frac{1}{(2-3x)^4} = (2-3x)^{-4}$$

$$\frac{dy}{dx} = -4(2-3x)^{-5}(-3)$$

$$= \frac{12}{(2-3x)^5}$$

4(ii)	Let $y = \left(2\sqrt{x} - \frac{3}{\sqrt{x}}\right)^2$
	$\therefore y = 4x - 12 + \frac{9}{x}$
	$\frac{\mathrm{d}y}{\mathrm{d}x} = 4 - \frac{9}{x^2}$
	$\therefore p = 4, q = -9$
4(iii)	$\int_0^1 \left(x^2 + 2 - e^{-2x} \right) dx$
	$= \left[\frac{x^3}{3} + 2x - \frac{e^{-2x}}{-2} \right]_0^1$
	$= \left[\frac{1}{3} + 2 + \frac{e^{-2}}{2}\right] - \frac{1}{2}$
	$=\frac{11}{6}+\frac{e^{-2}}{2}$
	$=\frac{11}{6}+\frac{1}{2e^2}$
5(i)	Initially, i.e. when $t = 0$, $P = 0$, Hence
	$0 = k \times 1.5^{\circ} - 0.6$
	$\therefore k = 0.6$

$$5(\mathbf{v}) \qquad C = t^3 - 10t^2 + 25t + 10$$

$$\frac{\mathrm{d}C}{\mathrm{d}t} = 3t^2 - 20t + 25$$

At stationary point on the graph, $\frac{dC}{dt} = 0$

$$3t^2 - 20t + 25 = 0$$

$$(t-5)(3t-5)=0$$

$$t = 5 \text{ or } \frac{5}{3}$$

$$\frac{\mathrm{d}^2 C}{\mathrm{d}t^2} = 6t - 20$$

when
$$t = 5$$
,

$$\frac{d^2C}{dt^2} = 6(5) - 20 = 10 > 0,$$

 $\therefore t = 5$ gives a minimum point on the graph.

when
$$t = \frac{5}{3}$$
,

$$\frac{d^2C}{dt^2} = 6\left(\frac{5}{3}\right) - 20 = -10 < 0,$$

 $\therefore t = \frac{5}{3} \text{ gives a maximum point on the graph .}$

5(vi)

5(vii) Using GC,

$$\int_0^6 (t^3 - 10t^2 + 25t + 10) \, \mathrm{d}t = 114$$

∴ The total cost incurred by Mr Tan over 6 years is \$114000

6(i)	
	$oxed{\operatorname{\underline{E}} oxed{\mathtt{I}}}$
	Group EI as 1 unit, total permutation of 8 units = 8!
	Permutate the unit consisting of $EI = 2!$
	\therefore No. of ways = 8! \times 2! = 80640
(ii)	No. of ways of choosing 4 letters without restriction = 9C_4
	No. of ways of choosing 4 letters with no vowel = ${}^{7}C_{4}$
	∴ No. of ways with at least 1 vowel chosen
	No. of ways of choosing 4 letters without restriction
	-No. of ways of choosing 4 letters with no vowel
	$= {}^{9}C_{4} - {}^{7}C_{4} = 91 \text{ ways}$
7(i)	Let <i>X</i> be the number of members in the sales team that receive bonus out of 8.
	$X \sim B(8, 0.32)$
	$P(X=4) = 0.15694 \approx 0.157$
(ii)	$P(X \ge 5) = 1 - P(X \le 4) = 0.074964 \approx 0.0750$
(iii)	Mean = $E(X)$ = 8(0.32) = 2.56
	Variance = Var(X)
	=8(0.32)(1-0.32)
	$=1.7408 \approx 1.74$

8 (i)	$P(A \mid B) = 0.1$
	$\frac{P(A \cap B)}{P(B)} = 0.1$
	${P(B)}$ = 0.1
	$P(A \cap B) = 0.1 \times 0.4 = 0.04$

8(ii) It is the probability that event *B* and (i.e. intersect) the complement of event *A* will occur at the same time.

8(iii) $P(A \cap B') = P(A) - P(A \cap B)$ = 0.6 - 0.04 = 0.56

 $P(A' \cup B) = 1 - P(A \cap B')$ = 1 - 0.56= 0.44

9(ii) Using GC, $r = 0.92083 \approx 0.921$

	It shows that there is a strong positive linear correlation between x (the marks of the students for the written test) and y (the marks of the
	students for the practical test).
9(iii)	Using GC,
	y = 0.11236x + 1.2183
	y = 0.112x + 1.22,
	where $a = 0.112$ and $b = 1.22$
	[For the sketch of the regression line on the scatter diagram, please refer to the scatter diagram in (i)]
9(iv)	When $x = 22$,
	y = 0.11236(22) + 1.2183
	= 3.69022
	= 3.7 (to 1 decimal place)
	Since $r = 0.921$ is close to 1 and $x = 22$ is within the range of x ($16 \le x \le 30$) given in the table, the estimate is an interpolation, therefore
	the estimate is reliable.
10(i)	1st sock 2nd sock
	9 3

 $\frac{9}{24} = \frac{3}{8}$

Appendix 2

	=1-P(2 socks are of same colour)
	$=1-\left[P(RR)+P(PP)+P(BB)\right]$
	$= 1 - \left(\frac{3}{20} + \frac{8}{25} \times \frac{7}{24} + \frac{7}{25} \times \frac{1}{4}\right)$
	$=\frac{103}{150}$
10(iv)	= $P(\text{exactly 2 red socks}) + P(\text{exactly 3 red socks})$
	= P(RRP) + P(RRB) + P(RPR) + P(RBR) + P(PRR) + P(RRR) + P(RRR)
	Required probability = $\frac{10}{25} \times \frac{9}{24} \times \frac{8}{23} + \frac{10}{25} \times \frac{9}{24} \times \frac{7}{23} + \frac{10}{25} \times \frac{8}{24} \times \frac{9}{23} + \frac{10}{25} \times \frac{7}{24} \times \frac{9}{23} + \frac{8}{25} \times \frac{10}{24} \times \frac{9}{23}$
	$+\frac{7}{25} \times \frac{10}{24} \times \frac{9}{23} + \frac{10}{25} \times \frac{9}{24} \times \frac{8}{23}$
	$=\frac{159}{460}$
11(i)	Let A be the time taken by a runner from the Arrows to run 5000m (in minutes).
	$A \sim N(14.8, 0.55^2)$
	P(A>15.0)
	=0.35806
	$\approx 0.358 \ (3 \text{ s.f.})$
11(ii)	Let B be the time taken by a runner from the Beavers to run 5000m (in minutes).
	$B \sim N(15.2, 0.65^2)$
	Let $T = A_1 + A_2 + B_1 + B_2 + B_3$

$$E(T) = 2(14.8) + 3(15.2) = 75.2$$

$$Var(T) = 2(0.55^{2}) + 3(0.65^{2}) = 1.8725$$

$$\therefore T \sim N(75.2, 1.8725)$$

$$P(T < 75)$$

$$= 0.44189$$

$$\approx 0.442 \quad (2 \text{ s.f.})$$

11(iii) Let $X = A_{1} + A_{2} + A_{3} + A_{4} + A_{5} + A_{6}$ and let $Y = B_{1} + B_{2} + B_{3} + B_{4} + B_{5} + B_{6}$

$$E(X) = 6E(A) = 88.8$$

$$Var(X) = 6Var(A) = 1.815$$

$$\therefore X \sim N(88.8, 1.815)$$

$$E(Y) = 6E(B) = 91.2$$

$$Var(Y) = 6Var(B) = 2.535$$

$$\therefore Y \sim N(91.2, 2.535)$$

$$X - Y \sim N(-2.4, 4.35)$$

$$P(|X - Y| \le 5)$$

$$= P(-5 \le X - Y \le 5)$$

$$= 0.89353$$

$$\approx 0.894$$

Let <i>M</i> be the event that the Arrows win a medal, and
N be the event that the Beavers win a medal.
P(M) = P(X < 90)
=0.81346
≈ 0.813
P(N) = P(Y < 90)
=0.22552
≈ 0.226
$P(M' \cap N')$
$= P((M \cup N)')$
$=1-\mathrm{P}\big(M\cup N\big)$
$=1-\left[P(M)+P(N)-P(M\cap N)\right]$
$=1-\left[P(M)+P(N)-P(M)\times P(N)\right]$
=0.14447
≈ 0.144
Unbiased estimate of the population mean is \bar{x}
$=\frac{\sum x}{n} = \frac{5928}{60} = 98.8$
Unbiased estimate of the population variance is s^2

$$= \frac{1}{n-1} \left[\sum x^2 - \frac{\left(\sum x\right)^2}{n} \right]$$

$$= \frac{1}{60-1} \left[587000 - \frac{5928^2}{60} \right]$$

$$= 22.264$$

$$\approx 22.3$$

12(ii) Let X be the mass of a cake (in g) produced by the baker,

and μ be the population mean mass of the cakes.

$$H_0: \mu = 100$$

$$H_1: \mu < 100$$

Test at 5% significance level

Under H_0 , since n = 60 is large, by Central Limit Theorem,

$$\bar{X} \sim N\left(100, \frac{22.264}{60}\right)$$
 approximately

Using GC, \bar{x} gives $z_{\text{calc}} = -1.9699$ and p-value = 0.0244

Since p-value = 0.0244 < 0.05, we reject H_0 and conclude that there is sufficient evidence, at 5% significance level, that the mean mass of these cakes is less than 100g.

12(iii) $H_0: \mu = 100$

$$H_1: \mu \neq 100$$

Test at 5% significance level

Under H_0 , since n = 60 is large, by Central Limit Theorem,

test statistic
$$Z = \frac{\overline{X} - 100}{\sqrt{\frac{19.0}{60}}} \sim N(0,1)$$
 approximately

Since there is sufficient evidence to reject the baker's statement,

there is sufficient evidence to reject H_0 .

Therefore, test statistic Z will lie in the critical region.

 $Z \le -1.9599$ or $Z \ge 1.9599$

$$\frac{\overline{x} - 100}{\sqrt{\frac{19.0}{60}}} \le -1.9599 \quad \text{or} \quad \frac{\overline{x} - 100}{\sqrt{\frac{19.0}{60}}} \ge 1.9599$$

 $\bar{x} \le 98.897$ or $\bar{x} \ge 101.10$

 $\therefore \left\{ \overline{x} \in \mathbb{R} : \overline{x} \le 98.9 \text{ or } \overline{x} \ge 101 \right\}$